×

Solving the kinematics and dynamics of a modular spatial hyper-redundant manipulator by means of screw theory. (English) Zbl 1347.70002

Summary: In this contribution, a systematic methodology for solving the kinematic and dynamic analyses of a modular spatial hyper-redundant manipulator built with an optional number of serially connected three-legged in-parallel manipulators are presented.
First, the kinematics and dynamics of the base module are carried out using the theory of screws and the principle of virtual work. Next, the expressions obtained for the base module are extended without significant effort to the spatial hyper-redundant manipulator under study. Finally, the proposed methodology of analysis is applied to a 18 degrees of freedom hyper-redundant manipulator.

MSC:

70B15 Kinematics of mechanisms and robots
Full Text: DOI

References:

[1] Yanqiong, F., Qinglei, D., Xifang, Z.: Modular structure of a self-reconfigurable robot. Front. Mech. Eng. China 2, 116–119 (2007) · doi:10.1007/s11465-007-0020-z
[2] Ropponen, T., Nakamura, Y.: Singularity-free parameterization and performance analysis of actuation redundancy. In: IEEE International Conference on Robotics and Automation, pp. 806–811 (1990)
[3] Zergeroglu, E., Dawson, D.D., Walker, I.W., Setlur, P.: Nonlinear tracking control of kinematically redundant robot manipulators. IEEE/ASME Trans. Mechatron. 9(1), 129–132 (2004) · doi:10.1109/TMECH.2004.823890
[4] Kim, S.W., Park, K.B., Lee, J.J.: Redundancy resolution of robot manipulators using optimal kinematic control. In: IEEE International Conference on Robotics and Automation, pp. 683–688 (1994)
[5] Hsia, T.C., Guo, Z.Y.: New inverse kinematic algorithms for redundant robots. J. Robot. Syst. 8, 117–132 (1991) · Zbl 0716.70008 · doi:10.1002/rob.4620080108
[6] Suh, I.H., Shin, K.G.: Coordination of dual robot arms using kinematic redundancy. IEEE Trans. Robot. Autom. 5(2), 236–242 (1989) · doi:10.1109/70.88045
[7] Nguyen, L.A., Walker, I.D., Defigueiredo, R.J.P.: Dynamic control of flexible, kinematically redundant robot manipulators. IEEE Trans. Robot. Autom. 8(6), 759–767 (1992) · doi:10.1109/70.182676
[8] Chen, T.H., Cheng, F.T., Sun, Y.Y., Hung, M.H.: Torque optimization schemes for kinematically redundant manipulators. J. Robot. Syst. 11, 257–269 (1994) · Zbl 0800.70025 · doi:10.1002/rob.4620110403
[9] Dasgupta, B., Mruthyunjaya, T.S.: Force redundancy in parallel manipulators: theoretical and practical issues. Mech. Mach. Theory 33, 727–742 (1998) · Zbl 1049.70601 · doi:10.1016/S0094-114X(97)00094-3
[10] Gallardo-Alvarado, J., Alici, G., Aguilar-Nájera, C., Pérez-González, L.: A new family of non-overconstrained redundantly-actuated parallel manipulators. Multibody Syst. Dyn. (2007, submitted)
[11] Mohamed, M.G., Gosselin, C.M.: Design and analysis of kinematically redundant parallel manipulators with configurable platforms. IEEE Trans. Robot. 21, 277–287 (2005) · doi:10.1109/TRO.2004.837234
[12] Wang, J., Gosselin, C.M.: Kinematic analysis and design of kinematically redundant parallel manipulators. ASME J. Mech. Des. 126, 109–118 (2004) · doi:10.1115/1.1641189
[13] Bi, Z.M., Gruver, W.A., Zhang, W.J., Lang, S.Y.T.: Automated modeling of modular robotic configurations. Robot. Autom. Syst. 54, 1015–1025 (2006) · doi:10.1016/j.robot.2006.04.017
[14] Kryriakopoulos, K.J., Migadis, G., Sarriageorgidis, K.: The NTUA snake: Design, planar kinematics, and motion planning. J. Robot. Syst. 16, 37–72 (1999) · Zbl 0930.70005 · doi:10.1002/(SICI)1097-4563(199901)16:1<37::AID-ROB4>3.0.CO;2-V
[15] Shugen, M.: Naoki T.: Analysis of creeping locomotion of a snake-like robot on a slope. Auton. Robots 20, 15–23 (2006) · doi:10.1007/s10514-006-5204-6
[16] Paljug, E., Ohm, T., Hayati, S.: The JPL serpentine robot: a 12-DOF system for inspection. In: Proceedings of the IEEE International Conference on Robotics and Automation, Nagoya, Japan, pp. 3143–3148 (1995)
[17] Pettinato, J.S.: Stephanou, h.E.: Manipulability and stability of a tentacle based robot manipulator. In: Proceedings of the IEEE International Conference on Robotics and Automation, Scottsdale, AZ, vol. 1, pp. 458–463 (1989)
[18] Hanan, M.W., Walker, I.A.: Kinematics and the implementation of an elephant’s trunk manipulator and other continuum style robots. J. Robot. Syst. 20, 45–63 (2003) · Zbl 1018.70500 · doi:10.1002/rob.10070
[19] Tanev, T.K.: Kinematics of a hybrid (parallel-serial) robot manipulator. Mech. Mach. Theory 35, 1183–1196 (2000) · doi:10.1016/S0094-114X(99)00073-7
[20] Zheng, X.Z., Bin, H.Z., Luo, Y.G.: Kinematic analysis of a hybrid serial-parallel manipulator. Int. J. Adv. Manuf. Technol. 23, 925–930 (2004) · doi:10.1007/s00170-003-1782-z
[21] Carbone, G., Ceccarelli, M.: A serial-parallel robotic architecture for surgical tasks. Robotica 23, 345–354 (2005) · doi:10.1017/S0263574704000967
[22] Carbone, G., Ceccarelli, M.: A stiffness analysis for a hybrid parallel-serial manipulator. Robotica 22, 567–576 (2005) · doi:10.1017/S0263574704000323
[23] Gallardo-Alvarado, J.: Kinematics of a hybrid manipulator by means of screw theory. Multibody Syst. Dyn. 14, 345–366 (2005) · Zbl 1146.70304 · doi:10.1007/s11044-005-4196-x
[24] Lu, Y., Leinonen, T.: Solution and simulation of position-orientation for multi-spatial 3-RPS parallel mechanisms in series connection. Multibody Syst. Dyn. 14, 47–60 (2005) · Zbl 1175.70005 · doi:10.1007/s11044-005-1355-z
[25] Lu, Y., Hu, B.: Solving driving forces of 2(3-SPR) serial-parallel manipulator by CAD variation geometry approach. ASME J. Mech. Des. 128, 1349–1351 (2006) · doi:10.1115/1.2338577
[26] Hunt, K.H.: Structural kinematics of in-parallel actuated robot arms. ASME J. Mech. Transpr. Autom. Des. 105, 705–712 (1983) · doi:10.1115/1.3258540
[27] Lee, K.M., Sha, D.K.: Kinematic analysis of a three-degree-of-freedom in-parallel actuated manipulator. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 1, pp. 345–350 (1987)
[28] Kim, H.S., Tsai, L.-W.: Kinematic synthesis of a spatial 3-RPS parallel manipulator. ASME J. Mech. Des. 125, 92–97 (2003) · doi:10.1115/1.1539505
[29] Liu, C.H., Cheng, S.: Direct singular positions of 3RPS parallel manipulators. ASME J. Mech. Des. 126, 1006–1016 (2004) · doi:10.1115/1.1803851
[30] Huang, Z., Fang, Y.: Kinematic characteristics analysis of 3 DOF in-parallel actuated pyramid mechanism. Mech. Mach. Theory 31, 1009–1018 (1996) · doi:10.1016/0094-114X(96)84594-0
[31] Fang, Y., Huang, Z.: Kinematics of a three-degree-of-freedom in-parallel actuated manipulator mechanism. Mech. Mach. Theory 32, 789–796 (1997) · doi:10.1016/S0094-114X(97)00008-6
[32] Huang, Z., Wang, J.: Identification of principal screws of 3-DOF parallel manipulators by quadric degeneration. Mech. Mach. Theory 36, 893–911 (2001) · Zbl 1140.70335 · doi:10.1016/S0094-114X(01)00036-2
[33] Agrawal, S.K.: Study of an in-parallel mechanism using reciprocal screws. In: Proceedings of 8th World Congress on TMM 405-408 (1990)
[34] Huang, Z., Wang, J.: Instantaneous motion analysis of deficient-rank 3-DOF parallel manipulators by means of principal screws. In: Proceedings of A Symposium Commemorating the Legacy, Works, and Life of Sir Robert Stawell Ball Upon the 100th Aniversary of A Treatise on the Theory of Screws (2000)
[35] Huang, Z., Wang, J., Fang, Y.: Analysis of instantaneous motions of deficient-rank 3-RPS parallel manipulators. Mech. Mach. Theory 37, 229–240 (2002) · Zbl 1140.70435 · doi:10.1016/S0094-114X(01)00075-1
[36] Gallardo, J., Orozco, H., Rodríguez, R., Rico, J.M.: Kinematics of a class of parallel manipulators which generates structures with three limbs. Multibody Syst. Dyn. 17, 27–46 (2007) · Zbl 1160.70304 · doi:10.1007/s11044-006-9033-3
[37] Gallardo, J., Orozco, H., Rico, J.M.: Kinematics of 3-RPS parallel manipulators by means of screw theory. Int. J. Adv. Manuf. Technol. Published on line (2007): http://dx.doi.org/10.1007/s00170-006-0851-5
[38] Alizade, R., Bayram, C.: Structural synthesis of parallel manipulators. Mech. Mach. Theory 39, 857–870 (2004) · Zbl 1143.70302 · doi:10.1016/j.mechmachtheory.2004.02.008
[39] Zlatanov, D., Bonev, I.A., Gosselin, C.M.: Constraint singularities of parallel mechanisms. In: IEEE International Conference on Robotics and Automation, ICRA 2002, vol. 1, pp. 496–502 (2002)
[40] Innocenti, C., Parenti-Castelli, V.: Direct position analysis of the Stewart platform mechanism. Mech. Mach. Theory 35, 611–621 (1990) · doi:10.1016/0094-114X(90)90004-4
[41] Tsai, L.-W.: Robot Analysis. Wiley, New York (1999)
[42] Rico, J.M., Duffy, J.: An Application of screw algebra to the acceleration analysis of serial chains. Mech. Mach. Theory 31, 445–457 (1996) · doi:10.1016/0094-114X(95)00089-H
[43] Rico, J.M., Gallardo, J., Duffy, J.: Screw theory and higher order kinematic analysis of open serial and closed chains. Mech. Mach. Theory 34, 559–586 (1999) · Zbl 1049.70557 · doi:10.1016/S0094-114X(98)00029-9
[44] Rico, J.M., Duffy, J.: Forward and inverse acceleration analyses of in-parallel manipulators. ASME J. Mech. Des. 122, 299–303 (2000) · doi:10.1115/1.1288360
[45] Gallardo, J., Rico, J.M.: Screw theory and helicoidal fields. In: Proceedings of the ASME 1998 Design Engineering Technical Conference 1998. CD-ROM format, Paper DETC98/MECH-5893 (1998)
[46] Lipkin, H.: Time derivatives of screws with applications to dynamic and stiffness. Mech. Mach. Theory 40, 259–273 (2005) · Zbl 1142.70305 · doi:10.1016/j.mechmachtheory.2003.07.002
[47] Gallardo, J., Rico, J.M., Frisoli, A., Checcacci, D., Bergamasco, M.: Dynamics of parallel manipulators by means of screw theory. Mech. Mach. Theory 38, 1113–1131 (2003) · Zbl 1062.70560 · doi:10.1016/S0094-114X(03)00054-5
[48] Gallardo-Alvarado, J., Rico-Martínez, J.M.: Jerk influence coefficients, via screw theory, of closed chains. Meccanica 36, 213–228 (2001) · Zbl 1009.70008 · doi:10.1023/A:1013074907533
[49] Ball, R.S.: A Treatise on the Theory of Screws. Cambridge University Press, Reprinted 1998 · Zbl 0928.70002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.