×

Analysis of dynamic strains in tibia during human locomotion based on flexible multibody approach integrated with magnetic resonance imaging technique. (English) Zbl 1347.74067

Summary: Bone is known to adapt to the prevalent strain environment while the variation in strains, e.g., due to mechanical loading, modulates bone remodeling, and modeling. Dynamic strains rather than static strains provide the primary stimulus of bone functional adaptation. The finite element method can be generally used for estimating bone strains, but it may be limited to the static analysis of bone strains since the dynamic analysis requires expensive computation. Direct in vivo strain measurement, in turn, is an invasive procedure, limited to certain superficial bone sites, and requires surgical implementation of strain gauges and thus involves risks (e.g., infection). Therefore, to overcome difficulties associated with the finite element method and the in vivo strain measurements, the flexible multibody simulation approach has been recently introduced as a feasible method to estimate dynamic bone strains during physical activity. The purpose of the present study is to further strengthen the idea of using the flexible multibody approach for the analysis of dynamic bone strains. Besides discussing the background theory, magnetic resonance imaging is integrated into the flexible multibody approach framework so that the actual bone geometry could be better accounted for and the accuracy of prediction improved.

MSC:

74L15 Biomechanical solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
92C10 Biomechanics
70E55 Dynamics of multibody systems
Full Text: DOI

References:

[1] Leondes, C.: Musculoskeletal Models and Techniques. Biomechanical Systems: Techniques and Applications, vol. III. CRC Press, Boca Raton (2000)
[2] Turner, C.H.: Three rules for bone adaptation to mechanical stimuli. Bone 23, 399–407 (1998) · doi:10.1016/S8756-3282(98)00118-5
[3] Lanyon, L.E., Rubin, C.T.: Static vs dynamic loads as an influence on bone remodeling. J. Biomech. 17, 897–905 (1984) · doi:10.1016/0021-9290(84)90003-4
[4] Lanyon, L.E., Hampson, W.G., Goodship, A.E., Shah, J.S.: Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthop. Scand. 46, 256–268 (1975) · doi:10.3109/17453677508989216
[5] Burr, D.B., Milgrom, C., Fyhrie, D., Forwood, M., Nyska, M., Finestone, A., Hoshaw, S., Saiag, E., Simkin, A.: In vivo measurement of human tibial strains during vigorous activity. Bone 18, 405–410 (1996) · doi:10.1016/8756-3282(96)00028-2
[6] Földhazy, Z., Arndt, A., Milgrom, C., Finestone, A., Ekenman, I.: Exercise-induced strain and strain rate in the distal radius. J. Bone Jt. Surg. 87-B, 261–266 (2005) · doi:10.1302/0301-620X.87B2.14857
[7] Eberhard, P., Spägele, T., Gollhofer, A.: Investigations for the dynamical analysis of human motion. Multibody Syst. Dyn. 3, 1–20 (1999) · Zbl 0944.92003 · doi:10.1023/A:1009880222265
[8] Piazza, S.J., Delp, S.L.: Three-dimensional dynamic simulation of total knee replacement motion during step-up task. J. Biomech. Eng. 123, 599–606 (2001) · doi:10.1115/1.1406950
[9] Delp, S.L.: Surgery simulation: A computer graphics system to analyze and design musculoskeletal reconstructions of the lower limb. Doctoral thesis, Stanford University (1990)
[10] Spagele, T., Kistner, A., Gollhofer, A.: Modeling, simulation and optimisation of a human vertical jump. J. Biomech. 32, 521–530 (1999) · doi:10.1016/S0021-9290(98)00145-6
[11] Nagano, A., Yoshioka, S., Komura, T., Himeno, R., Fukashiro, S.: A three-dimensional linked segmental model of the whole human body. Int. J. Sport Health Sci. 3, 311–325 (2005) · doi:10.5432/ijshs.3.311
[12] Silva, M.P.T., Ambrósio, J.A.C., Pererira, M.S.: Biomechanical model with joint resistance for impact simulation. Multibody Syst. Dyn. 1, 65–84 (1997) · Zbl 0885.92002 · doi:10.1023/A:1009700405340
[13] Ambrósio, J.A.C., Silva, M.P.T.: Structural and biomechanical crashworthiness using multi-body dynamics. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 218, 629–645 (2004) · doi:10.1243/0954407041166076
[14] Duda, G.N., Heller, M., Albinger, J., Schulz, O., Schneider, E., Claes, L.: Influence of muscle forces on femoral strain distribution. J. Biomech. 31, 841–846 (1998) · doi:10.1016/S0021-9290(98)00080-3
[15] Cheung, J.T., Zhang, M., Leung, A.K., Fan, Y.B.: Three-dimensional finite element analysis of the foot during standing–a material sensitivity study. J. Biomech. 38, 1045–1054 (2005) · doi:10.1016/j.jbiomech.2004.05.035
[16] Al Nazer, R., Rantalainen, T., Heinonen, A., Sievänen, H., Mikkola, A.: Flexible multibody simulation approach in the analysis of tibial strain during walking. J. Biomech. 41, 1036–1043 (2008) · Zbl 1347.74067 · doi:10.1016/j.jbiomech.2007.12.002
[17] LifeMOD User’s Manual, version 2007.0.0, Biomechanics Research Group, Inc., California, USA (2007)
[18] Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, New York (1998) · Zbl 0932.70002
[19] De Jalon, J.G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge. Springer, New York (1994)
[20] Kim, S., Haug, E.J.: Selection of deformation modes for flexible multibody dynamics. Mech. Struct. Mach. 18, 565–586 (1990) · doi:10.1080/08905459008915685
[21] Craig, R.R.: Coupling of substructures for dynamic analysis–an overview. American Institute of Aeronautics and Astronautics Dynamics Specialists Conference, Atlanta, USA (2000)
[22] Reilly, D.T., Burstein, A.H.: The elastic and ultimate properties of compact bone tissue. J. Biomech. 8, 393–405 (1975) · doi:10.1016/0021-9290(75)90075-5
[23] ADAMS Online Documentation, version 12.0, Mechanical Dynamics, Inc., Ann Arbor, Michigan, USA (2001)
[24] Pandy, M.G.: Computer modeling and simulation of human movement. Annu. Rev. Biomed. Eng. 3, 245–273 (2001) · doi:10.1146/annurev.bioeng.3.1.245
[25] Nigg, B.M., Herzog, W.: Biomechanics of the Musculo-Skeletal System. Wiley, New York (1999)
[26] Amankwah, K., Triolo, R.J., Kirsch, R.: Effects of spinal cord injury on lower-limb passive joint moments revealed through a nonlinear viscoelastic model. J. Rehabil. Res. Dev. 41, 15–32 (2004) · doi:10.1682/JRRD.2004.01.0015
[27] Eycleshymer, A.C., Shoemaker, D.M.: A Cross-section Anatomy. Appleton-Century-Crofts, New York (1970)
[28] Hatze, H.: Estimation of myodynamics parameter values from observations on isometrically contracting muscle groups. Eur. J. Appl. Physiol. Occup. Physiol. 46, 325–338 (1981) · doi:10.1007/BF00422120
[29] Gilchrist, L.A., Winter, D.A.: A two-part, viscoelastic foot model for use in gait simulations. J. Biomech. 29, 795–798 (1996) · doi:10.1016/0021-9290(95)00141-7
[30] 3D-DOCTOR User’s Manual, version 4.0, Able Software Corp., Lexington, USA (2007)
[31] SolidWorks User’s Manual, version SP3.1, Dassault Systemes, Sureness, France (2005)
[32] ANSYS User’s Manual, version 11.0, ANSYS Inc., Canonsburg, USA (2001)
[33] Dong, X.N., Guo, X.E.: The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity. J. Biomech. 37, 1281–1287 (2004) · doi:10.1016/j.jbiomech.2003.12.011
[34] Meirovitch, L.: Elements of Vibration Analysis. McGraw-Hill, New York (1975) · Zbl 0359.70039
[35] Dias Rodrigues, J.F., Lopes, H., De Melo, F.Q., Simoes, J.A.: Experimental modal analysis of a synthetic composite femur. Soc. Exp. Mech. 44, 29–32 (2004) · doi:10.1007/BF02427972
[36] Silva, M.P.T., Ambrósio, J.A.C.: Kinematic data consistency in the inverse dynamics analysis of biomechanical systems. Multibody Syst. Dyn. 8, 219–239 (2002) · Zbl 1246.74034 · doi:10.1023/A:1019545530737
[37] Vaughan, C.L., Davis, B.L., O’Connor, J.C.: Dynamics of Human Gait. Kiboho, Cape Town (1999)
[38] Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56, 553–613 (2003) · doi:10.1115/1.1590354
[39] Milgrom, C., Finestone, A., Simkin, A., Ekenman, I., Mendelson, S., Millgram, M., Nyska, M., Larsson, E., Burr, D.: In-vivo strain measurements to evaluate the strengthening potential of exercises on the tibial bone. J. Bone Jt. Surg. 82, 591–594 (2000) · doi:10.1302/0301-620X.82B4.9677
[40] Milgrom, C., Radeva-Petrova, D.R., Finestone, A., Nyska, M., Mendelson, S., Benjuya, N., Simkin, A., Burr, D.: The effect of muscle fatigue on in vivo tibial strains. J. Biomech. 40, 845–850 (2006) · doi:10.1016/j.jbiomech.2006.03.006
[41] Hibbeler, R.C.: Mechanics of Materials. Prentice-Hall, Singapore (2005) · Zbl 0313.70002
[42] Peterman, M.M., Hamel, A.J., Cavanagh, P.R., Piazza, S.J., Sharkey, N.A.: In vitro modeling of human tibial strains during exercise in micro-gravity. J. Biomech. 34, 693–698 (2001) · doi:10.1016/S0021-9290(01)00004-5
[43] Burr, D.B.: Muscle strength, bone mass, and age-related bone loss. J. Bone Miner. Res. 12, 1547–1551 (1997). Official Journal of the American Society for Bone and Mineral Research · doi:10.1359/jbmr.1997.12.10.1547
[44] Sharkey, N.A., Hamel, A.J.: A dynamic cadaver model of the stance phase of gait: performance characteristics and kinetic validation. Clin. Biomech. 13, 420–433 (1998) · doi:10.1016/S0268-0033(98)00003-5
[45] Biewener, A.A.: Musculoskeletal design in relation to body size. J. Biomech. 24, 19–29 (1991) · doi:10.1016/0021-9290(91)90374-V
[46] Garcia, G.J., da Silva, J.K.: On the scaling of mammalian long bones. J. Exp. Biol. 207, 1577–1584 (2004) · doi:10.1242/jeb.00890
[47] Ackermann, M.: Dynamics and energetics of walking with prostheses. Doctoral Thesis, University of Stuttgart (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.