×

Shear crack in a transversely isotropic magnetoelectroelastic half-space. (English) Zbl 1258.74193

Summary: Explicit closed-form expressions are derived and discussed for the stress, electric and magnetic fields’ components around an arbitrarily loaded antiplane shear crack situated parallel to the free-surface of a semi-infinite transversely isotropic magnetoelectroelastic material. Some illustrative numerical data are presented.

MSC:

74R10 Brittle fracture
74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] Gao, C. -F.; Kessler, H.; Balke, H.: Crack problems in magnetoelectroelastic solids. Part I: Exact solution of a crack, Int. J. Eng. sci. 41, 969-981 (2003) · Zbl 1211.74187 · doi:10.1016/S0020-7225(02)00323-3
[2] Gao, C. -F.; Kessler, H.; Balke, H.: Crack problems in magnetoelectroelastic solids. Part II: General solution of collinear cracks, Int. J. Eng. sci. 41, 983-994 (2003) · Zbl 1211.74188 · doi:10.1016/S0020-7225(02)00324-5
[3] Hu, K.; Li, G.: Electro-magneto-elastic analysis of piezoelectromagnetic strip with a finite crack under longitudinal shear, Mech. mater. 37, 925-934 (2005)
[4] Hu, K.; Li, G.: Constant moving crack in a magnetoelectroelastic material under antiplane shear loading, Int. J. Solid struct. 42, 2823-2835 (2005) · Zbl 1093.74550 · doi:10.1016/j.ijsolstr.2004.09.036
[5] Huang, J. H.; Liu, H. -K.; Dai, W. -L.: The optimized fiber volume fraction for magnetoelectric coupling effect in piezoelectric – piezomagnetic continuous fiber reinforced composites, Int. J. Eng. sci. 38, 1207-1217 (2000)
[6] Li, J. Y.: Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials, Int. J. Eng. sci. 38, 1993-2011 (2000)
[7] Liu, J. X.; Soh, A. K.; Fang, D. N.: A moving dislocation in a magneto-electro-elastic solid, Mech. res. Commun. 32, 504-513 (2005) · Zbl 1192.74106 · doi:10.1016/j.mechrescom.2005.02.009
[8] Sue, W. C.; Liou, J. Y.; Sung, J. C.: Investigation of the stress singularity of a magneto-electroelastic bonded antiplane wedge, Appl. math. Model. 31, 2313-2331 (2007) · Zbl 1129.74019 · doi:10.1016/j.apm.2006.09.003
[9] Tupholme, G. E.: Mode III crack in an isotropic elastic half-space, Int. J. Eng. sci. 27, 123-129 (1989) · Zbl 0675.73061 · doi:10.1016/0020-7225(89)90072-4
[10] Tupholme, G.E., 2007. Moving antiplane shear crack in transversely isotropic magnetoelectro-elastic media. Acta Mech. accepted for publication.
[11] Wang, B. L.; Mai, Y. -W.: Crack tip field in piezoelectric/piezomagnetic media, Eur. J. Mech. A: solid 22, 591-602 (2003) · Zbl 1032.74641 · doi:10.1016/S0997-7538(03)00062-7
[12] Wang, B. -L.; Mai, Y. -W.: Fracture of piezoelectromagnetic materials, Mech. res. Commun. 31, 65-73 (2004) · Zbl 1045.74586 · doi:10.1016/j.mechrescom.2003.08.002
[13] Zhao, M. H.; Wang, H.; Yang, F.; Liu, T.: A magnetoelectroelastic medium with an elliptical cavity under combined mechanical – electric magnetic loading, Theor. appl. Fract. mech. 45, 227-237 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.