×

Supernumary polylogarithmic ladders and related functional equations. (English) Zbl 0729.33015

This paper is one of a series in which the authors explore relations between special values of the polylogarithm \(Li_ n(z)=\sum^{\infty}_{k=1}z^ k/k^ n\). The development is now exposed as a whole in the monograph “Structural properties of polylogarithms” edited by the first author [Mathematical Surveys and Monographs. 37. Providence, RI: American Mathematical Society (AMS) (1991; Zbl 0745.33009)]. Set \[ L_ n(N,u)=\frac{Li_ n(u^ N)}{N^{n-1}}-\left\{\sum_{r}\frac{A_ rLi_ n(u^ r)}{r^{n-1}}+\frac{A_ 0\log^ n u}{n!}\right\} \] and \[ L_ n=\sum^{n}_{m=2}\frac{B_ m\zeta (m)\log^{n-m} u}{(n-m)!}. \] A ladder is a relation \(L_ n(N,u)=L_ n\) with rational \(A_ r\), \(B_ m\). In all cases found so far, the \(A_ r\) are determined by the cyclotomic equation for the base \(u\): \[ 1-u^ N=u^{-A_ 0}\prod_{r}(1-u^ r)^{A_ r}. \] For \(n\leq 5\), Kummer’s functional equations for \(Li_ n\) give many ladders, but there are no functional equations of this type for \(n\geq 6\). For certain special bases, there are additional relations for the dilogarithm which in some cases have analytic proofs and in some cases are still only verified numerically. These can be used to eliminate unwanted transcendental terms from the ladders and so obtain ladders for \(n\geq 6\). Several examples are given for bases satisfying equations of the shape \(u^ p+u^ q=1\). The examples have led the authors to discover some new one variable functional equations for polylogarithms, but these are too complex to reproduce here. These successes and the elimination of other potentialities rely on extensive computer algebra and MACSYMA.

MSC:

33B30 Higher logarithm functions
39B32 Functional equations for complex functions
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable

Citations:

Zbl 0745.33009

Software:

MACSYMA

References:

[1] Lewin, L.,The dilogarithm in algebraic fields. J. Austral. Math. Soc. A33 (1982), 302–330. · Zbl 0507.33010 · doi:10.1017/S1446788700018747
[2] Lewin, L.,The inner structure of the dilogarithm in algebraic fields. J. Number Theory19 (1984), 345–373. · Zbl 0556.12001 · doi:10.1016/0022-314X(84)90077-5
[3] Abouzahra, M. andLewin, L.,The polylogarithm in algebraic number fields. J. Number Theory21 (1985), 214–244. · Zbl 0577.12001 · doi:10.1016/0022-314X(85)90052-6
[4] Lewin, L.,The order-independence of the polylogarithmic ladder structure – implications for a new category of functional equations. Aequationes Math.30 (1986), 1–20. · Zbl 0606.39005 · doi:10.1007/BF02189908
[5] Lewin, L. andRost, E.,Polylogarithmic functional equations: a new category of results developed with the help of computer algebra (MACSYMA). Aequationes Math.31 (1986), 223–242. · Zbl 0606.39006 · doi:10.1007/BF02188191
[6] Abouzahra, M. andLewin, L.,The polylogarithm in the field of two irreducible quintics. Aequationes Math.31 (1986), 315–321. · Zbl 0619.12001 · doi:10.1007/BF02188198
[7] Abouzahra, M., Lewin, L. andHongnian, X.,Polylogarithms in the field of omega (a root of a given cubic): functional equations and ladders. Aequationes Math.33 (1987), 23–45. Addendum in35 (1988), 304. · Zbl 0642.33021 · doi:10.1007/BF01836149
[8] Wechsung, G.,Über die Unmöglichkeit der Vorkommens von Funktionalgleichungen gewisser Struktur für Polylogarithmen. Aequationes Math.5 (1970), 54–62. · Zbl 0203.46303 · doi:10.1007/BF01819271
[9] Browkin, J., personal communication.
[10] Euler, L.,Institutiones Calculi Integralis. Bd.1 (1768), pp. 110–113. (see also [12]).
[11] Landen, J.,Mathematical Memoirs. Vol. 1, 1780, p. 112 (see also [12]).
[12] Lewin, L.,Polylogarithms and associated functions. Elsevier/North-Holland, New York, 1981. · Zbl 0465.33001
[13] Coxeter, H. S. M.,The functions of Schläfli and Lobatschefsky. Quart. J. Math. Oxford Ser.6 (1935), 13–29. · Zbl 0011.17006 · doi:10.1093/qmath/os-6.1.13
[14] Phillips, M. J. andWhitehouse, D. J.,Two-dimensional discrete properties of random surfaces. Phil. Trans. Roy. Soc. London Ser. A305 (1982), 441–468. · Zbl 0498.60059 · doi:10.1098/rsta.1982.0043
[15] Rogers, L. J., On function sum theorems connected with the series \(\sum _{n = 1}^\infty {{x^2 } \mathord{\left/ {\vphantom {{x^2 } {n^2 }}} \right. \kern-\nulldelimiterspace} {n^2 }}\) . Proc. London Math Soc. (2)4 (1907), 169–189. · JFM 37.0428.03 · doi:10.1112/plms/s2-4.1.169
[16] Loxton, J. H.,Special values of the dilogarithm function. Acta Arithmetica43 (1984), 155–166. · Zbl 0485.10036
[17] See equations (48) and (49) of Reference [2].
[18] Browkin, J., private correspondence.Conjecture on the dilogarithm. To be published inK-Theory.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.