×

Perturbation solutions for blast waves with convective and radiative heat transfer. (English) Zbl 0733.76039

Summary: The non-self-similar point explosion problem is investigated, taking into account internal heat transfer effects. The conductive heat flux is expressed in terms of Fourier’s law and radiation is considered to be of the diffusion type. A coordinate expansion based on the reciprocal of the square of the shock Mach number is employed to obtain solutions for the initial stages of blast waves with nonzero counter-pressure for either planar, cylindrical or spherical symmetry. The first approximation that corresponds to the self-similar problem and the second approximation are discussed. Since both formulations imply a two-point boundary-value problem with a singularity at the centre of symmetry an iterative shooting technique is applied to determine the correct solutions. The comparison of our results with those of other authors is presented.

MSC:

76L05 Shock waves and blast waves in fluid mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] Taylor, G. I.: The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. R. Soc. Lond.A 201, 159-174 (1950). · Zbl 0036.26404 · doi:10.1098/rspa.1950.0049
[2] Sedov, L. I.: Similarity and dimensional methods in mechanics. Trans. from 4th Russian ed., pp. 210-233. New York: Academic Press 1959. · Zbl 0121.18504
[3] Sakurai, A.: Blast wave theory. In: Basic developments in fluid dynamics, vol. 1 (Holt, M., ed.), pp. 309-375, New York: Academic Press 1965.
[4] Bach, G. G., Lee, J. H.: Higher-order perturbation solutions for blast waves. AIAA J.7, 742-744 (1969). · doi:10.2514/3.5202
[5] Bach, G. G., Lee, J. H.: An analytical solution for blast waves. AIAA J.8, 271-275 (1970). · doi:10.2514/3.5655
[6] Oshima, K.: Blast waves produced by exploding wire. Report of Aero. Research Institute, University of Tokyo358 (1960).
[7] Brode, H. L.: Numerical solutions of spherical blast waves. J. Appl. Phys.26, 766-775 (1955). · Zbl 0065.19301 · doi:10.1063/1.1722085
[8] Plooster, M. N.: Shock waves from line sources. Numerical solutions and experimental measurements. Phys. Fluids13, 2665-2675 (1970). · doi:10.1063/1.1692848
[9] Wehle, P., Gretler, W.: Numerisches Charakteristikenverfahren zur L?sung des Explosions-problems. Z. Angew. Math. Mech.71, T528-T531 (1991). · Zbl 0739.76030
[10] Elliot, L. A.: Similarity methods in radiation and hydrodynamics. Proc. R. Soc. Lond.A 258, 287-301 (1960). · doi:10.1098/rspa.1960.0188
[11] Sychev, V. V.: On the theory of strong explosion in heat conducting gas. J. Appl. Math. Mech.29, 997-1003 (1965). · Zbl 0148.45503 · doi:10.1016/0021-8928(65)90003-1
[12] Bowen, J. R., Feay, B. A.: A refinement of the cylindrical blast wave. Astronautica Acta15, 275-282 (1970).
[13] Kamel, M. M., Khater, H. A., Siefien, H. G., Rafat, N. M., Oppenheim, A. K.: A self-similar solution for blast waves with transport properties. Acta Astronautica4, 425-437 (1977). · Zbl 0363.76045 · doi:10.1016/0094-5765(77)90060-1
[14] Ghoniem, A. F., Kamel, M. M., Berger, S. A., Oppenheim, A. K.: Effects of internal heat transfer on the structure of self-similar blast waves. J. Fluid Mech.117, 473-491 (1982). · Zbl 0537.76032 · doi:10.1017/S0022112082001724
[15] Brode, H. L.: Gasdynamic motion with radiation: a general numerical method. Astronautica Acta14, 433-444 (1969).
[16] Kim, K. B., Berger, S. A., Kamel, M. M., Korobeinikov, V. P., Oppenheim, A. K.: Boundarylayer theory for blast waves. J. Fluid Mech.71, 65-88 (1975). · Zbl 0326.76063 · doi:10.1017/S0022112075002431
[17] Abdel-Raouf, A. M.: Propagation of non-self-similar blast waves in a uniform atmosphere with heat transfer effects. Z. Angew. Math. Mech.69, T655-T656 (1989).
[18] Abdel-Raouf, A. M., Gretler, W.: Quasi-similar solutions for blast waves with internal heat transfer effects. Z. Angew. Math. Mech.70, T421-T423 (1990).
[19] Schneider, W.: Grundlagen der Strahlungsgasdynamik. Acta Mechanica5, 85-117 (1968). · Zbl 0164.27703 · doi:10.1007/BF01178826
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.