×

Some remarks on the computation of complements and normalizers in soluble groups. (English) Zbl 0719.20010

Finite soluble groups G are represented in a computer by a (consistent) power-commutator-presentation passing through a normal series \(G=N_ 0>N_ 1>...>N_ r=1\) with elementary abelian factors; subgroups have a canonical generating series; many computations proceed inductively from \(G/N_ i\) to \(G/N_{i+1}\). The present paper contains an algorithm for the computation of \(H^ 1(G,M)\) (i.e. representatives for the conjugacy classes of complements to the normal subgroup M in the semidirect product GM) for a soluble group G acting on an elementary abelian p-group M and explanations of its use in the computation of representatives for the conjugacy classes of complements to normal subgroups and of its use in the computation of the normalizer of a subgroup. In these algorithms the authors seek to avoid general ‘orbit-stabilizer algorithms’ which would involve time consuming collection processes; they are replaced by affine group actions on vector-spaces which can be processed by solving systems of linear equations. While there are no comparable previous implementations of complement algorithms, the effectiveness of the present refinement of the S. Glasby and M. Slattery normalizer algorithm [J. Symb. Comput. 9, 637-651 (1990; Zbl 0707.20001)] is demonstrated by relevant examples run under the GAP-system at Aachen.
\(\{\) Several references have now appeared in J. Symb. Comput. 9, No.5/6 (1990).\(\}\) This article is reprinted in: G. M. Piacentini Cattaneo, E. Strickland (eds.), Topics in Computational Algebra (Computational Algebra Seminar, Rome ‘Tor Vergata’, 9-11 May 1990), Kluwer Acad. Publ. (1990; Zbl 0723.00021).

MSC:

20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
20D40 Products of subgroups of abstract finite groups
20-04 Software, source code, etc. for problems pertaining to group theory
20F05 Generators, relations, and presentations of groups
20F14 Derived series, central series, and generalizations for groups

Software:

GAP
Full Text: DOI

References:

[1] Cannon, J., A Computational Toolkit for Finite Permutation Groups. M. Aschbacher et al., ed., Proc. Rutgers Group Theory Year 1983/84, Cambridge U.P. 1984, 1-18.
[2] Conlon, S.B., Calculating characters of p-groups. J. Symbolic Comp. to appear. · Zbl 0741.20003
[3] Felsch, V., Neubüser, J., An algorithm for the computation of conjugacy classes and centralizers in p-groups. Lecture Notes in Computer Science 72 (1979) 452-465. · Zbl 0433.20017
[4] Glasby, S.P., Slattery, M.C., Computing intersections and normalizers in soluble groups. J. Symbolic Comp. to appear. · Zbl 0707.20001
[5] Havas, G., Nicholson, T., Collection. R.D. Jenks, ed., SYMSAC’76, Assoc. Comp. Mach., New York (1976) 9-14.
[6] Holt, D.F., The calculation of the Schur multiplier of a permutation group. M.D. Atkinson, ed., Computational Group Theory, Acad. Press (1984) 307-319. · Zbl 0544.20004
[7] Leedham-Green, C.R., Soicher, L.H., Collection from the Left and other Strategies. J. Symbolic Comp. to appear. · Zbl 0726.20001
[8] Laue, R., Neubüser, J., Schoenwaelder, U., Algorithms for finite soluble groups and the SOGOS system. M.D. Atkinson, ed., Computational Group Theory, Acad. Press (1984) 105-135. · Zbl 0547.20012
[9] Macdonald, I. D., A computer application to finite p-groups. J. Austral. Math. Soc. 17 (1974) 102-112. · Zbl 0277.20024 · doi:10.1017/S1446788700015962
[10] Mecky, M., Neubüser, J., Some remarks on the computation of conjugacy classes of soluble groups. Bull. Austral. Math. Soc. 40 (1989) 281-292. · Zbl 0683.20001 · doi:10.1017/S0004972700004378
[11] Neubüser, J., Bestimmung der Untergruppenverbände endlicher p-Gruppen auf einer programmgesteuerten elektronischen Dualmaschine. Numer. Math. 3 (1961) 271-278. · Zbl 0109.35504 · doi:10.1007/BF01386028
[12] Newman, M.F., Calculating presentations for certain kinds of quotient groups. R.D. Jenks, ed., SYMSAC’76, Assoc. Comput. Mach., New York (1976) 2-8. · Zbl 0455.20002
[13] Niemeyer A., Nickel W., Schönert M., GAP. Getting started and Reference Manual. Lehrstuhl D für Mathematik, RWTH Aachen, 1988.
[14] O’Brien, E.A., The p-group generation algorithm. J. Symbolic Comp. to appear. · Zbl 0941.68633
[15] Plesken, W., Towards a soluble quotient algorithm. J. Symbolic Comp. 4 (1987) 111-122. · Zbl 0635.20013 · doi:10.1016/S0747-7171(87)80060-3
[16] Sims, C.C., Verifying Nilpotence. J. Symbolic Comp. 3 (1987) 231-247. · Zbl 0626.68034 · doi:10.1016/S0747-7171(87)80002-0
[17] Sims, C.C., Implementing the Baumslag-Cannonito-Miller Polycyclic Quotient Algorithm. J. Symbolic Comp. to appear. · Zbl 0703.20029
[18] Sims, C.C., Computing the Order of a Solvable Permutation Group. J. Symbolic Comp. to appear. · Zbl 0701.20001
[19] Vaughan-Lee, M.R., Collection from the Left. J. Symbolic Comp. to appear. · Zbl 0705.20017
[20] Wright, C.R.B., A Pseudo-Cayley complementation procedure for soluble groups. Manuscript 1988, University of Oregon.
[21] Wright, C.R.B., Recursive Algorithms for computing complements in Finite Groups. Manuscript 1988, University of Oregon.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.