×

Deterministic epidemic models with explicit household structure. (English) Zbl 1135.92029

Summary: For a wide range of airborne infectious diseases, transmission within a family or household is a key mechanism for the spread and persistence of infection. In general, household-based transmission is relatively strong but only involves a limited number of individuals in contact with each infectious person. In contrast, transmission outside the household can be characterised by many contacts but a lower probability of transmission.
We develop a relatively simple dynamical model that captures these two transmission regimes. We compare the dynamics of such models for a range of household sizes, whilst constraining all models to have equal early growth rate so that all models fit to the same early incidence observations of an epidemic. Finally we consider the use of prophylactic vaccination, responsive vaccination, or antivirals to combat epidemic spread and focus on whether it is optimal to target controls at entire households or to treat individuals independently.

MSC:

92D30 Epidemiology
37N25 Dynamical systems in biology
Full Text: DOI

References:

[1] Ferguson, N. M.; Keeling, M. J.; Edmunds, W. J.; Gani, R.; Grenfell, B. T.; Anderson, R. M.; Leach, S. A., Planning for smallpox outbreaks, Nature, 425, 681 (2003)
[2] Ferguson, N. M.; Cummings, D. A.T.; Fraser, C.; Cajka, J. C.; Cooley, P. C.; Burke, D. S., Strategies for mitigating an influenza pandemic, Nature, 442, 7101, 448 (2006)
[3] Keeling, M. J.; Woolhouse, M. E.J.; Shaw, D. J.; Matthews, L.; Chase-Topping, M.; Haydon, D. T.; Cornell, S. J.; Kappey, J.; Wilesmith, J.; Grenfell, B. T., Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape, Science, 294, 813 (2001)
[4] Ferguson, N. M.; Donnelly, C. A.; Anderson, R. M., The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions, Science, 292, 1155 (2001)
[5] Donnelly, C. A.; Ghani, A. C.; Leung, G. M.; Hedley, A. J.; Fraser, C.; Riley, S.; Abu-Raddad, L. J.; Ho, L. M.; Thach, T. Q.; Chau, P.; Chan, K. P.; Lam, T. H.; Tse, L. Y.; Tsang, T.; Liu, S. H.; Kong, J. H.B.; Lau, E. M.C.; Ferguson, N. M.; Anderson, R. M., Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong, Lancet, 361, 1761 (2003)
[6] Lane, H. C.; Montagne, J. L.; Fauci, A. S., Bioterrorism: a clear and present danger, Nat. Med., 7, 1271 (2001)
[7] World Health Organisation. Epidemic and pandemic alert and response (EPR)—avian influenza. http://www.who.int/csr/disease/avian_influenza/; World Health Organisation. Epidemic and pandemic alert and response (EPR)—avian influenza. http://www.who.int/csr/disease/avian_influenza/
[8] Riley, S.; Fraser, C.; Donnelly, C. A.; Ghani, A. C.; Abu-Raddad, L. J.; Hedley, A. J.; Leung, G. M.; Ho, L. M.; Lam, T. H.; Thach, T. Q.; Chau, P.; Chan, K. P.; Leung, P. Y.; Tsang, T.; Ho, W.; Lee, K. H.; Lau, E. M.C.; Ferguson, N. M.; Anderson, R. M., Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions, Science, 300, 1961 (2003)
[9] Halloran, M. E.; Longini, I. M.; Nizam, A.; Yang, Y., Containing bioterrorist smallpox, Science, 298, 1428 (2002)
[10] Riley, S.; Ferguson, N. M., Smallpox transmission and control: spatial dynamics in Great Britain, Proc. Natl. Acad. Sci. USA, 103, 12637 (2006)
[11] Ferguson, N. M.; Cummings, D. A.T.; Cauchemez, S.; Fraser, C.; Riley, S.; Meeyai, A.; Iamsirithaworn, S.; Burke, D. S., Strategies for containing an emerging influenza pandemic in southeast Asia, Nature, 437, 209 (2005)
[12] Kermack, W. O.; McKendrick, A. G., Contribution to the mathematical theory of epidemics, Proc. Roy. Soc. Lond. A, 115, 700 (1927) · JFM 53.0517.01
[13] May, R. M.; Anderson, R. M., Population biology of infectious diseases part II, Nature, 280, 455 (1979)
[14] Anderson, R. M.; May, R. M., Infectious Diseases of Humans (1992), Oxford University Press: Oxford University Press Oxford
[15] Keeling, M. J., Models of foot-and-mouth disease, Proc. Roy. Soc. Lond. B, 272, 1195 (2005)
[16] Riley, S., Large-scale spatial-transmission models of infectious disease, Science, 316, 1298 (2007)
[17] Keeling, M. J.; Bjørnstad, O. N.; Grenfell, B. T., Metapopulation dynamics of infectious diseases, (Hanski, I.; Gaggiotti, O. E., Ecology Genetics and Evolution of Metapopulations (2004), Elsevier: Elsevier Academic Press), 415
[18] Longini, I. M.; Koopman, J. S.; Monto, A. S.; Fox, J. P., Estimating household and community transmission parameters for influenza, Am. J. Epidemiol., 115, 736 (1982)
[19] Longini, I. M.; Koopman, J. S., Household and community transmission parameters from final distributions of infections in households, Biometrics, 38, 115 (1982) · Zbl 0482.92016
[20] Becker, N. G.; Dietz, K., The effect of household distribution on transmission and control of highly infectious-diseases, Math. BioSci., 127, 207 (1995) · Zbl 0824.92025
[21] Wu, J. T.; Riley, S.; Fraser, C.; Leung, G. M., Reducing the impact of the next influenza pandemic using household-based public health interventions, PLoS Med., 3, 532 (2006)
[22] Ball, Frank, Stochastic and deterministic models for SIS epidemics among a population partitioned into households, Math. BioSci., 156, 41 (1999) · Zbl 0979.92033
[23] Ghoshal, G.; Sander, L. M.; Sokolov, I. M., SIS epidemics with household structure: the self-consistent field method, Math. BioSci., 190, 71 (2004) · Zbl 1048.92029
[24] Neal, Peter, Stochastic and deterministic analysis of SIS household epidemics, Adv. Appl. Probab., 38, 943 (2006) · Zbl 1103.92035
[25] Ball, Frank; O’Neill, Philip D.; Pike, James, Stochastic epidemic models in structured populations featuring dynamic vaccination and isolation, J. Appl. Probab., 4, 571 (2007) · Zbl 1128.92035
[26] F. Ball, O. Lyne, Epidemics among a population of households, in: Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods and Theory, vol. 126 of IMA Volumes in Mathematics and its Applications, Springer-Verlag, 2002.; F. Ball, O. Lyne, Epidemics among a population of households, in: Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods and Theory, vol. 126 of IMA Volumes in Mathematics and its Applications, Springer-Verlag, 2002. · Zbl 1022.92026
[27] Ball, F.; Mollison, D.; Scalia-Tomba, G., Epidemics with two levels of mixing, Ann. Appl. Probab., 7, 1, 46 (1997) · Zbl 0909.92028
[28] Dodd, P. J.; Ferguson, N. M., Approximate disease dynamics in household-structured populations, J. Roy. Soc. Interf., 4, 1103 (2007)
[29] Fraser, Christophe, Estimating individual and household reproduction numbers in an emerging epidemic, PLoS ONE, 2, 8, 1 (2007)
[30] Halloran, M. E.; Hayden, F. G.; Yang, Y.; Longini, I. M.; Monto, A. S., Antiviral effects on influenza viral transmission and pathogenicity: observations from household-based trials, Am. J. Epidemiol., 165, 212 (2007)
[31] Ball, Frank, A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models, Adv. Appl. Probab., 18, 2, 289 (1986) · Zbl 0606.92018
[32] Bailey, Norman T., The Mathematical Theory of Infectious Diseases and its Applications (1975), Griffn: Griffn London · Zbl 0334.92024
[33] Hope-Simpson, R. E., Infectiousness of communicable diseases in the household, The Lancet, 2, 549 (1952)
[34] Ball, F.; Lyne, O., Optimal vaccination schemes for epidemics among a population of households, with application to variola minor in Brazil, Stat. Methods Med. Res., 15, 5, 481 (2006) · Zbl 1122.92303
[35] Ball, F.; Lyne, O., Optimal vaccination policies for stochastic epidemics among a population of households, Math. BioSci., 177-178, 222 (2002) · Zbl 0996.92032
[36] Wearing, H. J.; Rohani, P.; Keeling, M. J., Appropriate models for the management of infectious diseases, PLoS Med., 2, 621 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.