×

Gromov’s translation algebras, growth and amenability of operator algebras. (English) Zbl 1157.37004

The authors survey various relations between translation algebras, growth and amenability of finitely generated algebras and operator algebras. The relation between translation algebras of groups and amenability was discovered by G. Elek, who proved [Proc. Am. Math. Soc. 125, No. 9, 2551–2553 (1997; Zbl 0890.20027)] that the group \(G\) is amenable if and only if \(1\neq 0\) in \(K_0(T(G))\), the Grothendieck group of the translation algebra of \(G\). The arguments of Elek are reviewed in the present paper, in particular the existence of a trace in \(T(G)\) for an amenable group \(G\).
The classical notion of amenability has been extended to finitely generated algebras by Elek and to finitely generated dense \(*\)-subalgebras of C\(^*\)-algebras by the second author. The authors call a C\(^*\)-algebra \(\mathcal A\) finitely generated if it admits a dense unital finitely generated \(*\)-subalgebra, and \(\mathcal A \) is Følner if such a \(*\)-subalgebra is amenable. The authors show that Følner C\(^*\)-algebras are weakly filterable and weakly hypertracial, and they also prove that a countably infinite group \(G\) is amenable if and only if the group algebra \(\mathbb C [G]\) is amenable. They remark that this result has been extended to any group algebra \(\mathbb F [G]\) (where \(\mathbb F\) is any field), by L. Bartholdi [Isr. J. Math. 168, 153–165 (2008; Zbl 1167.43001)]. They close the paper with a list of open problems on Følner sequences and growth of algebras.

MSC:

37B15 Dynamical aspects of cellular automata
43A07 Means on groups, semigroups, etc.; amenable groups
20F65 Geometric group theory
46L05 General theory of \(C^*\)-algebras
Full Text: DOI

References:

[1] Ara, P.; O’Meara, K. C.; Perera, F., Gromov translation algebras over discrete trees are exchange rings, Trans. Amer. Math. Soc., 356, 2067-2079 (2004) · Zbl 1058.16008
[2] Arveson, W., Improper filtrations for \(C^*\)-algebras: spectra of unilateral tridiagonal operators, Acta Sci. Math. (Szeged), 57, 11-24 (1993) · Zbl 0819.46044
[3] L. Bartholdi, On amenability of group algebras, Israel J. Math. (to appear).; L. Bartholdi, On amenability of group algebras, Israel J. Math. (to appear). · Zbl 1167.43001
[4] Bédos, E., On filtrations for \(C^*\)-algebras, Houston J. Math., 20, 63-74 (1994) · Zbl 0808.46081
[5] Bédos, E., Notes on hypertraces and \(C^*\)-algebras, J. Operator Theory, 34, 285-306 (1995) · Zbl 0852.46048
[6] Berele, A., Homogeneous polynomial identities, Israel J. Math., 42, 258-272 (1982) · Zbl 0522.16015
[7] B. Blackadar, The algebraization of dynamics: amenability, nuclearity, quasidiagonality, and approximate finite dimensionality, in: Operator algebras, quantization, and noncommutative geometry, 51-83, Contemp. Math., 365, Amer. Math. Soc., Providence, RI, 2004.; B. Blackadar, The algebraization of dynamics: amenability, nuclearity, quasidiagonality, and approximate finite dimensionality, in: Operator algebras, quantization, and noncommutative geometry, 51-83, Contemp. Math., 365, Amer. Math. Soc., Providence, RI, 2004. · Zbl 1084.46043
[8] Block, J.; Weinberger, S., Aperiodic tilings, positive scalar curvature, and amenability of spaces, J. Amer. Math. Soc., 5, 907-918 (1992) · Zbl 0780.53031
[9] J. Block, S. Weinberger, Large scale homology theories and geometry, in: Geometric topology (Athens, GA, 1993), 522-569, AMS/IP Stud. Adv. Math., 2.1, Amer. Math. Soc., Providence, RI, 1997.; J. Block, S. Weinberger, Large scale homology theories and geometry, in: Geometric topology (Athens, GA, 1993), 522-569, AMS/IP Stud. Adv. Math., 2.1, Amer. Math. Soc., Providence, RI, 1997. · Zbl 0898.55006
[10] Ceccherini-Silberstein, T. G.; Grigorchuk, R. I.; de la Harpe, P., Amenability and paradoxical decompositions for pseudogroups and for discrete metric spaces, Proc. Steklov Inst. Math., 224, 57-97 (1999) · Zbl 0968.43002
[11] Connes, A., Classification of injective factors, Ann. Math., 104, 73-115 (1976) · Zbl 0343.46042
[12] Connes, A., Compact metric spaces, Fredholm modules and hyperfiniteness, Ergodic Theory and Dynamical Systems, 9, 207-220 (1989) · Zbl 0718.46051
[13] Connes, A., Noncommutative Geometry (1994), Academic Press: Academic Press San Diego, CA · Zbl 0681.55004
[14] K.R. Davidson, \( \operatorname{C}^*\); K.R. Davidson, \( \operatorname{C}^*\)
[15] Elek, G., The \(K\)-theory of Gromov’s translation algebras and the amenability of discrete groups, Proc. Amer. Math. Soc., 125, 2551-2553 (1997) · Zbl 0890.20027
[16] G. Elek, The Hochschild cohomologies of translation algebras and group cohomologies, see \(\langle;\) http://www.math.uiuc.edu/K-theory/\(0190/ \rangle;\); G. Elek, The Hochschild cohomologies of translation algebras and group cohomologies, see \(\langle;\) http://www.math.uiuc.edu/K-theory/\(0190/ \rangle;\)
[17] Elek, G., The amenability of affine algebras, J. Algebra, 264, 469-478 (2003) · Zbl 1022.43001
[18] Følner, E., On groups with full Banach mean value, Math. Scand., 3, 243-254 (1955) · Zbl 0067.01203
[19] F. Greenleaf, Mean invariant on topological groups, Van Nostrand, 1969.; F. Greenleaf, Mean invariant on topological groups, Van Nostrand, 1969. · Zbl 0174.19001
[20] R. Grigorchuk, P. Kurchanov, Some questions of group theory related to geometry, Encycl. of Math. Sciences, vol. 58, Algebra VII, Springer, Berlin, 1993.; R. Grigorchuk, P. Kurchanov, Some questions of group theory related to geometry, Encycl. of Math. Sciences, vol. 58, Algebra VII, Springer, Berlin, 1993. · Zbl 0781.20023
[21] M. Gromov, Asymptotic invariants of infinite groups, in: Graham A. Niblo, Martin A. Roller (Eds.), Geometric group theory, vol. 2 (Sussex, 1991), pp. 1-295, London Mathematical Society Lecture Note Series 182, Cambridge University Press, Cambridge, UK, 1993.; M. Gromov, Asymptotic invariants of infinite groups, in: Graham A. Niblo, Martin A. Roller (Eds.), Geometric group theory, vol. 2 (Sussex, 1991), pp. 1-295, London Mathematical Society Lecture Note Series 182, Cambridge University Press, Cambridge, UK, 1993. · Zbl 0841.20039
[22] P. de la Harpe, Operator algebras free groups and other groups, in: Recent advances in operator algebras (Orléans, 1992), Astérisque 232 (1995) 121-153.; P. de la Harpe, Operator algebras free groups and other groups, in: Recent advances in operator algebras (Orléans, 1992), Astérisque 232 (1995) 121-153. · Zbl 0846.46039
[23] A.Ya. Helemskii, The homology of Banach and topological algebras, Translated from the Russian by Alan West. Mathematics and its Applications (Soviet Series), 41. Kluwer Academic Publishers Group, Dordrecht, 1989.; A.Ya. Helemskii, The homology of Banach and topological algebras, Translated from the Russian by Alan West. Mathematics and its Applications (Soviet Series), 41. Kluwer Academic Publishers Group, Dordrecht, 1989. · Zbl 0695.46033
[24] Kaimanovich, V. A.; Vershik, A. M., Random walks on discrete groups: boundary and entropy, Annals Prob., 11, 457-490 (1983) · Zbl 0641.60009
[25] Kirchberg, E.; Vaillant, G., On \(C^*\)-algebras having linear, polynomial and subexponential growth, Invent. Math., 108, 635-652 (1992) · Zbl 0742.46036
[26] G. Krause, T. Lenagan, Growth of algebras and the Gelfand-Kirillov dimension, Revised edition, Graduate Studies in Mathematics, 22, American Mathematical Society, Providence, RI, 2000.; G. Krause, T. Lenagan, Growth of algebras and the Gelfand-Kirillov dimension, Revised edition, Graduate Studies in Mathematics, 22, American Mathematical Society, Providence, RI, 2000. · Zbl 0957.16001
[27] von Neumann, J., Zur allgemeinen Theorie des Masses, Fund. Math., 13, 73-116 (1929) · JFM 55.0151.01
[28] A.L.T. Paterson, Amenability, Mathematical Surveys and Monographs, vol. 29, American Mathematical Society, Providence, RI, 1988.; A.L.T. Paterson, Amenability, Mathematical Surveys and Monographs, vol. 29, American Mathematical Society, Providence, RI, 1988. · Zbl 0648.43001
[29] Pittet, C., Følner sequences in Polycyclic Groups, Revista Matematica Ibanoamericana, 11, 675-685 (1995) · Zbl 0842.20035
[30] C. Pittet, L. Saloff-Coste, Amenable groups, isoperimetric profiles and random walks, in: J. Cossey, C.F. Miller III, W.D. Newmann, M. Shapir (Eds.), Geometric group theory down under, (Camberra, 1996); Walter de Gruyter, 1999, pp. 296-316.; C. Pittet, L. Saloff-Coste, Amenable groups, isoperimetric profiles and random walks, in: J. Cossey, C.F. Miller III, W.D. Newmann, M. Shapir (Eds.), Geometric group theory down under, (Camberra, 1996); Walter de Gruyter, 1999, pp. 296-316. · Zbl 0934.43001
[31] Roe, J., Finite propagation speed and Connes’ foliation algebra, Math. Proc. Cambridge Philos. Soc., 102, 459-466 (1987) · Zbl 0646.58024
[32] Roe, J., An index theorem on open manifolds I-II, J. Differential Geometry, 27, 87-136 (1988) · Zbl 0657.58041
[33] J. Roe, Exotic cohomology and index theory on complete Riemannian manifolds, preprint, 1990.; J. Roe, Exotic cohomology and index theory on complete Riemannian manifolds, preprint, 1990.
[34] Samet-Vaillant, A. Y., \(C^*\)- algebras, Gelfand-Kirillov dimension and Følner sets, J. Funct. Anal., 171, 346-365 (2000) · Zbl 0973.46045
[35] Samet-Vaillant, A. Y., Free*-subalgebras of \(C^*\)-algebras, J. Funct. Anal., 171, 432-448 (2000) · Zbl 0973.46046
[36] Ufnarovski, V., Combinatorial and asymptotic methods in algebra, Encyclopedia of Math. Sciences, Algebra VI, vol. 57 (1995), Springer: Springer Berlin · Zbl 0826.00010
[37] Vaillant, G., Følner conditions, nuclearity, and subexponential growth in \(C^*\)-algebras, J. Funct. Anal., 141, 435-448 (1996) · Zbl 0904.46043
[38] D. Voiculescu, A note on quasidiagonal operators in: Topics in operator theory, Constantin Apostol Memorial Issue, Operator Theory, Advances and Applications, vol. 32, Birkhäuser, Basel, 1988. pp. 265-274.; D. Voiculescu, A note on quasidiagonal operators in: Topics in operator theory, Constantin Apostol Memorial Issue, Operator Theory, Advances and Applications, vol. 32, Birkhäuser, Basel, 1988. pp. 265-274. · Zbl 0641.00017
[39] Voiculescu, D., On the existence of quasi-central approximate units relative to normed ideals, J. Funct. Anal., 91, 1-36 (1990) · Zbl 0762.46051
[40] Wagon, S., The Banach-Tarski paradox [Corrected reprint of the 1985 original] (1993), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0569.43001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.