×

The one-dimensional fractional supersymmetric quantum mechanical operator of momentum. (English) Zbl 1192.81175

Summary: In the case of the quantum generalization of stable Lévy processes, expressions for the Hermitian operator of momentum and its eigenfunctions are proposed. The normalization constant has been determined and its relation to the translation operator is shown. The interrelation between the momentum and the wave number has been generalized for the processes with a non-integer dimensionality \(\alpha\). The simplest nonlocal superalgebra is introduced.

MSC:

81Q65 Alternative quantum mechanics (including hidden variables, etc.)
26A33 Fractional derivatives and integrals
81Q60 Supersymmetry and quantum mechanics
81S25 Quantum stochastic calculus
Full Text: DOI

References:

[1] Kac, M.: Probability and Related Topics in Physical Sciences. Chap. IV. Interscience, New York (1959) · Zbl 0087.33003
[2] Lévy, P.: The’orie de l’Addition des Variables Aléatoires. Gauthier-Villaws, Paris (1937)
[3] Mandelbrot, B.B., Ness, J.W. van: Fractional Brownian Motionx, fractional noises and applications. SIAM Rev. 70(4), 422–437 (1968) · Zbl 0179.47801 · doi:10.1137/1010093
[4] Klafter, J., Blumen, A., Shlesinger, M.F.: Stochastic pathway to anomalous diffusion. Phys. Rev. A 55(7), 9081–9085 (1987)
[5] Zaslavsky, G.M.: Fractional kinetic equation for Hamiltonian chaos. Phys. D 76(1–3), 110–372 (1994) · Zbl 1194.37163 · doi:10.1016/0167-2789(94)90254-2
[6] Zimbardo, G., Veltro, P., Basile, G., Principato, S.: Anomalous diffusion and Lévy random walk of magnetic field lines in three dimensional turbulence. Phys. Plasmas 2(7), 2653–2163 (1995) · doi:10.1063/1.871453
[7] Mantega, R.N., Stanley, H.E.: Scaling behaviour in the dynamics of an economic index. Nature 376(6535), 46–48 (1995) · doi:10.1038/376046a0
[8] West, B.J., Deering, W.: Fractal physiology for physicists: Lévy statistics. Phys. Rep. 46(1,2), 1–100 (1994) · doi:10.1016/0370-1573(94)00055-7
[9] Mehauté, A. Le (eds.): Fractional Differentiotion and its Applications. Books on Demand, Norderstedt (2005)
[10] Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. l37, R161–R208 (2004) · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/R01
[11] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 377, 461–580 (2002) · Zbl 0999.82053 · doi:10.1016/S0370-1573(02)00331-9
[12] Lutz, E.: Fractional transport equations for Lévy stable processes. Phys. Rev. Lett. 86(12), 2208–2211 (2001) · doi:10.1103/PhysRevLett.86.2208
[13] Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62(3), 3135–3125 (2000) · Zbl 0948.81595 · doi:10.1103/PhysRevE.62.3135
[14] Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45(8), 3739–3356 (2004) · Zbl 1071.81035 · doi:10.1063/1.1769611
[15] Kleinert, H.: Path Integrals in Quantum Mechanics, Statistics and Polymer Physics. World Scientific, Singapore (1990) · Zbl 0941.81575
[16] Landau, L.D., Lifshitz, E.M.: Nonrelativistic Theory. In: Landau, L.D., Lifshitz, E.M.: Quantum Mechanics, Course of Theoretical Physics, vol. 1. Pergamon, New York (1965) · Zbl 0178.57901
[17] Marchaud, V.: Sur les dérivées et sur les differences des functions de variables réelles. J. Math. Pures Appl. 6(4), 238–235 (1927)
[18] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam (1993) · Zbl 0818.26003
[19] Miskinis, P.: Nonlinear and Nonlocal Integrable Models. Technika, Vilnius (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.