×

Group corings. (English) Zbl 1145.16017

The authors define group corings by extending the concept of a group coalgebra, defined by Turaev, to the case where the base ring is not necessarily commutative. If \(G\) is a group and \(\mathcal C\) is a \(G\)-group coring, two concepts of \(\mathcal C\)-comodules are defined. Functors between categories of such comodules are studied, and the relationship to graded modules over graded rings is investigated. Galois group corings are defined and a structure result for \(G\)-comodules over a Galois group coring is proved. Morita contexts associated to a group coring are studied. The results are applied to group corings associated to a comodule algebra over a Hopf group coalgebra.

MSC:

16T15 Coalgebras and comodules; corings
16W50 Graded rings and modules (associative rings and algebras)
16D90 Module categories in associative algebras
16T05 Hopf algebras and their applications

References:

[1] Bass, H.: Algebraic K-theory. Benjamin, New York (1968) · Zbl 0174.30302
[2] Boisen, P.: Graded morita theory. J. Algebra 164, 1–25 (1994) · Zbl 0812.16045 · doi:10.1006/jabr.1994.1051
[3] Brzeziński, T.: The structure of corings. Induction functors, Maschke-type theorem, and Frobenius and Galois properties. Algebr. Represent. Theory 5, 389–410 (2002) · Zbl 1025.16017 · doi:10.1023/A:1020139620841
[4] Brzeziński, T., Wisbauer, R.: Corings and comodules. London Mathematical Society Lecture Note Series, vol. 309. Cambridge University Press, Cambridge (2003) · Zbl 1035.16030
[5] Caenepeel, S.: Galois corings from the descent theory point of view. Fields Inst. Commun. 43, 163–186 (2004) · Zbl 1082.16043
[6] Caenepeel, S., De Lombaerde, M.: A categorical approach to Turaev’s Hopf group coalgebras. Comm. Algebra 34, 2631–2657 (2006) · Zbl 1103.16024 · doi:10.1080/00927870600651430
[7] Caenepeel, S., Guédénon, T.: Fully bounded noetherian rings and Frobenius extensions. J. Algebra Appl. 6, 189–206 (2006) · Zbl 1126.16025 · doi:10.1142/S0219498807002107
[8] Caenepeel, S., Van Oystaeyen, F.: Brauer groups and the cohomology of graded rings. Monographs Textbooks Pure and Applied Mathematics, vol. 121. Marcel Dekker, New York (1988) · Zbl 0702.13001
[9] Caenepeel, S., Vercruysse, J., Wang, S.: Morita theory for corings and cleft entwining structures. J. Algebra 276, 210–235 (2004) · Zbl 1064.16037 · doi:10.1016/j.jalgebra.2004.02.002
[10] Marcus, A.: Equivalences induced by graded bimodules. Comm. Algebra 26, 713–731 (1998) · Zbl 0904.16005 · doi:10.1080/00927879808826159
[11] Năstăsescu, C., Torrecillas, B.: Graded coalgebras. Tsukuba J. Math. 17, 461–479 (1993) · Zbl 0819.16036
[12] Năstăsescu, C., Van Oystaeyen, F.: Methods of graded rings. Lecture Notes in Mathematics, vol. 1836. Springer, Berlin (2004)
[13] Sweedler, M.E.: The predual theorem to the jacobson-bourbaki theorem. Trans. Amer. Math. Soc. 213, 391–406 (1975) · Zbl 0317.16007 · doi:10.1090/S0002-9947-1975-0387345-9
[14] Virelizier, A.: Hopf group-coalgebras. J. Pure Appl. Algebra 171, 75–122 (2002) · Zbl 1011.16023 · doi:10.1016/S0022-4049(01)00125-6
[15] Wang, S.H.: Group twisted smash products and Doi-Hopf modules for T-coalgebras. Comm. Algebra 32, 3417–3436 (2004) · Zbl 1073.16034 · doi:10.1081/AGB-120039402
[16] Wang, S.H.: Group entwining structures and group coalgebra coextensions. Comm. Algebra 32, 3437–3457 (2004) · Zbl 1071.16041 · doi:10.1081/AGB-120039403
[17] Wang, S.H.: A Maschke type theorem for Hopf {\(\pi\)}-comodules. Tsukuba J. Math. 28, 377–388 (2004)
[18] Wang, S.H.: Morita contexts, {\(\pi\)}-Galois extensions for Hopf {\(\pi\)}-coalgebras. Comm. Algebra 34, 521–546 (2006) · Zbl 1141.16029 · doi:10.1080/00927870500387689
[19] Zunino, M.: Double construction for crossed Hopf coalgebras. J. Algebra 278, 43–75 (2004) · Zbl 1058.16035 · doi:10.1016/j.jalgebra.2004.03.019
[20] Zunino, M.: Yetter–Drinfeld modules for crossed structures. J. Pure Appl. Algebra 193, 313–343 (2004) · Zbl 1075.16019 · doi:10.1016/j.jpaa.2004.02.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.