×

Lossy and retardation effects on the localization of EM waves using a left-handed medium slab. (English) Zbl 1136.78307

Summary: It has been shown that a left-handed medium (LHM) slab with negative permittivity - \(\epsilon _{0}\) and negative permeability - \(\mu _{0}\) can be used to localize electromagnetic waves [T. J. Cui et al., Phys. Rev. B 71, 045114 (2005), ibid. 72, 035112 (2005)]. If two current sources with the same amplitudes and opposite directions are placed at the perfect-imaging points of the LHM slab, we have shown that all electromagnetic waves are completely confined in a region between the two sources. In this Letter, a slightly mismatched and lossy LHM lens is studied, where both the relative permittivity and permeability are slightly different from \(-1\), and the lossy and retardation effects on the electromagnetic-wave localization are investigated. Due to the loss and retardation, strong surface waves exist along the slab surfaces. When two current sources are located at the perfect imaging points symmetrically, we show that electromagnetic waves are nearly confined in the region between the two sources and few energies are radiated outside if the retardation and loss are small. When the loss becomes larger, more energies will flow out of the region. Numerical experiments are given to illustrate the above conclusions.

MSC:

78A40 Waves and radiation in optics and electromagnetic theory
Full Text: DOI

References:

[1] Veselago, V. G., Sov. Phys. Usp., 10, 509 (1968)
[2] Pendry, J. B., Phys. Rev. Lett., 85, 3966 (2000)
[3] Garcia, N.; Nieto-Vesperinas, M., Phys. Rev. Lett., 88, 207403 (2002)
[4] ’t Hooft, G. W., Phys. Rev. Lett., 87, 249701 (2001)
[5] Williams, J. M., Phys. Rev. Lett., 87, 249704 (2001)
[6] Valanju, P. M.; Valanju, A. P., Phys. Rev. Lett., 88, 187401 (2002)
[7] Cui, T. J.; Kong, J. A., Phys. Rev. B, 70, 165113 (2004)
[8] Cui, T. J.; Kong, J. A., Phys. Rev. B, 70, 205106 (2004)
[9] Rao, X. S.; Ong, C. K., Phys. Rev. B, 68, 113103 (2003)
[10] Rao, X. S.; Ong, C. K., Phys. Rev. E, 68, 067601 (2003)
[11] Cummer, S. A., Appl. Phys. Lett., 82, 1503 (2003)
[12] Merlin, R., Appl. Phys. Lett., 84, 1290 (2004)
[13] Cui, T. J.; Hao, Z. C.; Yin, X. X.; Hong, W.; Kong, J. A., Phys. Lett. A, 323, 484 (2004) · Zbl 1118.81330
[14] Cui, T. J.; Cheng, Q.; Lu, W. B.; Jiang, Q.; Kong, J. A., Phys. Rev. B, 71, 045114 (2005)
[15] John, S., Phys. Rev. Lett., 58, 2486 (1997)
[16] Takeda, M. W.; Kirihara, S.; Miyamoto, Y.; Sakoda, K.; Honda, K., Phys. Rev. Lett., 92, 093902 (2004)
[17] Sakoda, K., Optical Properties of Photonic Crystals (2001), Springer-Verlag: Springer-Verlag Berlin
[18] Kong, J. A., Prog. Electromagn. Res., 35, 1 (2002)
[19] Smith, D. R.; Schurig, D.; Rosenbluth, M.; Schultz, S.; Ramakrishna, S. A.; Pendry, J. B., Appl. Phys. Lett., 82, 1506 (2003)
[20] Fang, N.; Zhang, X., Appl. Phys. Lett., 82, 2 (2003)
[21] Wu, B.-I.; Grzegorczyk, T. M.; Zhang, Y.; Kong, J. A., J. Appl. Phys., 93, 11 (2003)
[22] Ramakrishna, S. A.; Pendry, J. B., J. Mod. Opt., 49, 1747 (2002) · Zbl 1024.78501
[23] Shelby, R. A.; Smith, D. R.; Schultz, S., Science, 292, 77 (2001)
[24] Ramakrishna, S. A.; Pendry, J. B., J. Mod. Opt., 50, 1419 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.