×

Network theory for polymer solutions in large amplitude oscillatory shear. (English) Zbl 1146.76003

Summary: A framework based on molecular entanglement kinetics is used to interpret the large amplitude oscillatory shear (LAOS) behavior of polyacrylamide and polystyrene solutions. A kinetic rate equation for the balance of entanglements is capable of reasonably predicting previously reported LAOS data for these solutions. Secondary shear stress versus shear rate loops were manifested in both solutions under severe conditions, and we attribute these to nonaffine deformation. While affine transient network theory predicts reasonable agreement with Lodge-Meissner relation in LAOS, the polystyrene solution disobeys the relationship at shear strain amplitudes exceeding unity. We explain this departure from Lodge-Meissner relation in LAOS with nonaffine network deformation.

MSC:

76A05 Non-Newtonian fluids
82D60 Statistical mechanics of polymers
Full Text: DOI

References:

[1] Giacomin, A. J.; Dealy, J. M.: Large-amplitude oscillatory shear, Techniques in rheological measurement, 99-121 (1993)
[2] Dealy, J. M.; Giacomin, A. J.: Sliding plate and sliding cylinder rheometers, Rheological measurement (1988)
[3] Dealy, J. M.; Giacomin, A. J.: Sliding plate and sliding cylinder rheometers, Rheological measurement, 237-259 (1998)
[4] Macdonald, I. F.; Marsh, B. D.; Ashare, E.: Chem. eng. Sci., Chem. eng. Sci. 24, 1615 (1969)
[5] Yen, H. -C.; Mclntire, L. V.: Trans. soc. Rheol., Trans. soc. Rheol. 16, 711 (1972)
[6] A.S. Lodge, Recent network theories of the rheological properties of moderately concentrated polymer solutions, Colloques Internationaux du Centre National de la Recherche Scientifique, XCVIII, Phénomènes de Relaxation et de Fluage en Rhéologie Non- Linéaire, Paris (June 27 – July 2, 1960); Éditions du Centre National de la Recherche Scientifique, Paris (1961), pp. 51 – 63.
[7] Liu, T. Y.; Soong, D. S.; Williams, M. C.: J. polym. Sci.: polym. Phys. ed., J. polym. Sci.: polym. Phys. ed. 22, 1561-1587 (1984)
[8] Giacomin, A. J.; Oakley, J. G.: J. rheol., J. rheol. 36, 1529-1546 (1992)
[9] Acierno, D.; La Mantia, F. P.; Marrucci, G.; Titomanlio, G.: J. non-Newtonian fluid mech., J. non-Newtonian fluid mech. 1, 125-146 (1976)
[10] Mewis, J.; Denn, M. M.: J. non-Newtonian fluid mech., J. non-Newtonian fluid mech. 12, 69-83 (1983)
[11] Jeyaseelan, R. S.; Giacomin, A. J.; Oakley, J. G.: Aiche J., Aiche J. 39, 846-854 (1994)
[12] Giacomin, A. J.; Jeyaseelan, R. S.: Polym. eng. Sci., Polym. eng. Sci. 35, 768-777 (1994)
[13] Bird, R. B.; Armstrong, R. C.; Hassager, O.: Dynamics of polymeric liquids, Fluid mechanics 1 (1987)
[14] Marrucci, G.; Titomanlio, G.; Sarti, G. C.: Rheol. acta, Rheol. acta 12, 269-275 (1973)
[15] Doebsen, D. K.; Jongschapp, R. J. J.; Kamphuis, H.: Polym. eng. Sci., Polym. eng. Sci. 25, 782-787 (1985)
[16] Vrentas, J. S.; Venerus, D. C.; Vrentas, C. M.: J. non-Newtonian fluid mech., J. non-Newtonian fluid mech. 40, 1-24 (1991)
[17] Orbey, N.; Dealy, J. M.: J. rheol., J. rheol. 35, 1035-1049 (1991)
[18] Giacomin, A. J.; Dealy, J. M.: Using large-amplitude oscillatory shear, Rheological measurement, 327-356 (1998)
[19] R.S. Jeyaseelan, Effect of processing additives on the wall slip of molten polyethylene, Ph.D. Thesis, A&M University, College Station, Texas, 1994.
[20] Tee, T. T.; Dealy, J. M.: Trans. soc. Rheol., Trans. soc. Rheol. 19, 595-615 (1975)
[21] Jeyaseelan, R. S.; Giacomin, A. J.: J. non-Newtonian fluid mech., J. non-Newtonian fluid mech. 47, 267-280 (1993) · Zbl 0775.76009
[22] Macsporran, W. C.; Spiers, R. P.: Rheol. acta, Rheol. acta 21, 184-192 (1982)
[23] Macsporran, W. C.; Spiers, R. P.: Rheol. acta, Rheol. acta 21, 193-200 (1982)
[24] Macsporran, W. C.; Spiers, R. P.: Rheol. acta, Rheol. acta 23, 90-96 (1984)
[25] Lodge, A. S.: Elastic liquids, (1964)
[26] J.G. Oakley, Measurement of normal thrust and evaluation of upper-convected Maxwell models in large amplitude oscillatory shear, M.S. Thesis, A&M University, College Station, Texas, 1992.
[27] Giacomin, A. J.; Jeyaseelan, R. S.: ASME trans., J. Eng. mater. Technol., ASME trans., J. Eng. mater. Technol. 116, 14-18 (1994)
[28] Gordon, R. J.; Schowalter, R. W.: Trans. soc. Rheol., Trans. soc. Rheol. 16, 79-97 (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.