×

On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum. (English) Zbl 1134.81023

Summary: We consider quantum Hamiltonians of the form \(H(t)= H + V (t)\) where the spectrum of \(H\) is semibounded and discrete, and the eigenvalues behave as \(E_{n}\sim n^{\alpha}\), with \(0< \alpha <1\). In particular, the gaps between successive eigenvalues decay as \(n^{\alpha - 1}\). \(V(t)\) is supposed to be periodic, bounded, continuously differentiable in the strong sense and such that the matrix entries with respect to the spectral decomposition of \(H\) obey the estimate
\[ \|V(t)_{m, n}\|\leq \varepsilon | m - n |^{- p}\max\{m, n\}^{- 2 \gamma} \quad \text{for }m \not= n, \] where \(\varepsilon >0, p \geq 1\) and \(\gamma =(1 - \alpha)/2\). We show that the energy diffusion exponent can be arbitrarily small provided \(p\) is sufficiently large and \(\epsilon\) is small enough. More precisely, for any initial condition \(\Psi \in \text{Dom}(H^{1/2})\), the diffusion of energy is bounded from above as \(\langle H \rangle_{\Psi}(t)= O (t^{\sigma})\), where \(\sigma=\alpha/(2\lceil p-1\rceil \gamma-\frac{1}{2})\). As an application we consider the Hamiltonian \(H (t)=| p |^{\alpha}+ \varepsilon v (\theta, t)\) on \(L^{2}(S^{1},d \theta)\) which was discussed earlier in the literature by Howland.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
47N50 Applications of operator theory in the physical sciences

References:

[1] Asch, J., Duclos, P., Exner, P.: Stability of driven systems with growing gaps, quantum rings, and Wannier ladders. J. Stat. Phys. 92, 1053–1070 (1998) · Zbl 1079.81518 · doi:10.1023/A:1023000828437
[2] Astaburuaga, M.A., Bourget, O., Cortés, V.H., Fernández, C.: Floquet operators without singular continuous spectrum. J. Funct. Anal. 238, 489–517 (2006) · Zbl 1106.47034
[3] Barbaroux, J.M., Joye, A.: Expectation values of observables in time-dependent quantum mechanics. J. Stat. Phys. 90, 1225–1249 (1998) · Zbl 0921.47059 · doi:10.1023/A:1023279311564
[4] Bunimovich, L., Jauslin, H.R., Lebowitz, J.L., Pellegrinotti, A., Nielaba, P.: Diffusive energy growth in classical and quantum driven oscillators. J. Stat. Phys. 62, 793–817 (1991) · Zbl 0741.70017 · doi:10.1007/BF01017984
[5] De Bièvre, S., Forni, G.: Transport properties of kicked and quasiperiodic Hamiltonians. J. Stat. Phys. 90, 1201–1223 (1998) · Zbl 0923.47042 · doi:10.1023/A:1023227327494
[6] Bhatia, R., Rosenthal, P.: How and why to solve the operator equation AXB=Y. Bull. Lond. Math. Soc. 29, 1–21 (1997) · Zbl 0909.47011 · doi:10.1112/S0024609396001828
[7] Bourget, O.: Singular continuous Floquet operators for systems with increasing gaps. J. Math. Anal. Appl. 276, 28–39 (2002) · Zbl 1043.47051 · doi:10.1016/S0022-247X(02)00277-9
[8] Bourget, O.: Singular continuous Floquet operator for periodic quantum systems. J. Math. Anal. Appl. 301, 65–83 (2005) · Zbl 1061.47066 · doi:10.1016/j.jmaa.2004.07.008
[9] Combes, J.-M.: Connection between quantum dynamics and spectral properties of time-evolution operators. In: Ames, W.F., Harrell, E.M., Herod, J.V. (eds.) Differential Equations and Applications to Mathematical Physics, pp. 59–68. Academic Press, Boston (1993) · Zbl 0797.35136
[10] Combescure, M.: The quantum stability problem for time-periodic perturbations of the harmonic oscillator. Ann. Inst. Henri Poincaré 47, 62–82 (1987). Erratum: Ann. Inst. Henri Poincaré 47, 451–454 (1987)
[11] Combescure, M.: Spectral properties of a periodically kicked quantum Hamiltonian. J. Stat. Phys. 59, 679–690 (1990) · Zbl 0713.58044 · doi:10.1007/BF01025846
[12] Combescure, M.: Recurrent versus diffusive dynamics for a kicked quantum oscillator. Ann. Inst. Henri Poincaré 57, 67–87 (1992) · Zbl 0766.58061
[13] Duclos, P., Lev, O., Štovíček, P., Vittot, M.: Progressive diagonalization and applications. In: Combes, J.-M., et al. (eds.) Operator Algebras and Mathematical Physics, pp. 75–88. The Theta Foundation, Bucharest (2003) · Zbl 1284.81136
[14] Duclos, P., Soccorsi, E., Štovíček, P., Vittot, M.: Dynamical localization in periodically driven quantum systems. In: Boca, F.-P., Bratteli, O., Longo, R., Siedentop, H. (eds.) Advances in Operator Algebras and Mathematical Physics, pp. 57–66. The Theta Foundation, Bucharest (2005) · Zbl 1199.47090
[15] Enss, V., Veselić, K.: Bound states and propagating states for time-dependent Hamiltonians. Ann. Inst. Henri Poincaré 39, 159–191 (1983) · Zbl 0532.47007
[16] Guarneri, I., Mantica, G.: On the asymptotic properties of quantum dynamics in the presence of a fractal spectrum. Ann. Inst. Henri Poincaré A 61, 369–379 (1994) · Zbl 0817.47078
[17] Hagedorn, G.A., Loss, M., Slawny, J.: Non-stochasticity of time-dependent quadratic Hamiltonians and the spectra of canonical transformations. J. Phys. A: Math. Gen. 19, 521–531 (1986) · Zbl 0601.70013 · doi:10.1088/0305-4470/19/4/013
[18] Howland, J.S.: Floquet operators with singular spectrum, I. Ann. Inst. Henri Poincaré 50, 309–323 (1989) · Zbl 0689.34022
[19] Howland, J.S.: Floquet operators with singular spectrum, II. Ann. Inst. Henri Poincaré 50, 325–334 (1989) · Zbl 0689.34023
[20] Howland, J.S.: Floquet operators with singular spectrum, III. Ann. Inst. Henri Poincaré 69, 265–273 (1998) · Zbl 0910.34068
[21] Jauslin, H., Lebowitz, J.L.: Spectral and stability aspects of quantum chaos. Chaos 1, 114–121 (1991) · Zbl 0899.58059 · doi:10.1063/1.165809
[22] Joye, A.: Absence of absolutely continuous spectrum of Floquet operators. J. Stat. Phys. 75, 929–952 (1994) · Zbl 0835.47010 · doi:10.1007/BF02186751
[23] Joye, A.: Upper bounds for the energy expectation in the time-dependent quantum mechanics. J. Stat. Phys. 85, 575–606 (1996) · Zbl 0952.47500 · doi:10.1007/BF02199357
[24] Krein, S.G.: Linear Differential Equations in Banach Spaces. American Mathematical Society, Providence (1971) · Zbl 0236.47034
[25] McCaw, J., McKellar, B.: On the continuous spectral component of the Floquet operator for a periodically kicked quantum system. J. Math. Phys. 46, 103503 (2005) · Zbl 1111.81061 · doi:10.1063/1.2035027
[26] Nenciu, G.: Floquet operators without absolutely continuous spectrum. Ann. Inst. Henri Poincaré A 59, 91–97 (1993) · Zbl 0795.47032
[27] Nenciu, G.: Adiabatic theory: stability of systems with increasing gaps. Ann. Inst. Henri Poincaré A 67, 411–424 (1997) · Zbl 0884.34088
[28] de Oliveira, C.R.: Some remarks concerning stability for nonstationary quantum systems. J. Stat. Phys. 78, 1055–1065 (1995) · Zbl 1078.81527 · doi:10.1007/BF02183701
[29] de Oliveira, C.R., Simsen, M.S.: A Floquet operator with pure point spectrum and energy instability. Ann. Inst. Henri Poincaré (2007, to appear) · Zbl 1135.81015
[30] Reed, M., Simon, B.: Methods of Modern Mathematical Physics III. Academic Press, San Diego (1979) · Zbl 0405.47007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.