×

Ono invariants of imaginary quadratic fields with class number three. (English) Zbl 1210.11127

Summary: Let \(E_d(x)\) denote the “Euler polynomial” \(x^2+x+(1-d)/4\) if \(d\equiv 1\pmod 4\) and \(x^2-d\) if \(d\equiv 2,3\pmod 4\). Set \(\Omega(n)\) to be the number of prime factors (counting multiplicity) of the positive integer \(n\). The Ono invariant Ono\(_d\) of \(K=\mathbb Q(sqrt d)\) is defined to be \(\max\{\Omega(E_d(b)): b= 0,1,\dots,|\Delta_d|/4-1\) except when \(d=-1,-3\) in which case Ono\(_d\) is defined to be 1. Finally, let \(h_d=h_k\) denote the class number of \(K\). In 2002 J. Cohen and J. Sonn [J. Number Theory 95, No. 2, 259–267 (2002; Zbl 1082.11068)] conjectured that \(h_d=3\Leftrightarrow\text{Ono}_d=3\) and \(-d=p\equiv 3\pmod 4\) is a prime. They verified that the conjecture is true for \(p<1.5\times 10^7\). Moreover, they proved that the conjecture holds for \(p>10^{17}\) assuming the extended Riemann Hypothesis. In this paper, we show that the conjecture holds for \(p\leq 2.5\times 10^{13}\) by the aid of computer. And using a result of Bach, we also prove that the conjecture holds for \(p>2.5\times 10^{13}\) assuming the extended Riemann Hypothesis. In conclusion, we prove the conjecture is true assuming the extended Riemann Hypothesis.

MSC:

11Y40 Algebraic number theory computations
11R29 Class numbers, class groups, discriminants
11R11 Quadratic extensions

Citations:

Zbl 1082.11068
Full Text: DOI

References:

[1] Bach, E., Explicit bounds for primality testing and related problems, Math. Comp., 55, 355-380 (1990) · Zbl 0701.11075
[2] Bach, E.; Sorenson, J., Explicit bounds for primes in residue classes, Math. Comp., 65, 1717-1735 (1996) · Zbl 0853.11077
[3] Cohen, Henri, A Course in Computational Algebraic Number Theory, Grad. Texts in Math., vol. 138 (1996), Springer-Verlag: Springer-Verlag Berlin, 420 · Zbl 0786.11071
[4] Cohen, J.; Sonn, J., On the Ono invariants of imaginary quadratic fields, J. Number Theory, 95, 259-267 (2002) · Zbl 1082.11068
[5] Frobenius, F. G., Über quadratische Formen, die viele Primzahlen darstellen, Sitzungsber. Königliche Akad. Wiss. Berlin, 966-980 (1912) · JFM 43.0278.01
[6] Mollin, R. A., Quadratics (1995), CRC Press: CRC Press Boca Raton · Zbl 0888.11041
[7] Rabinowitch, G., Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern, J. Reine Angew. Math., 142, 153-164 (1913) · JFM 44.0243.03
[8] Sasaki, R., On a lower bound for the class number of an imaginary quadratic field, Proc. Japan Acad. Ser. A Math. Sci., 62, 37-39 (1986) · Zbl 0591.12008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.