×

Global dynamics of microbial competition for two resources with internal storage. (English) Zbl 1125.92058

Summary: We study a chemostat model that describes competition between two species for two essential resources based on storage. The model incorporates internal resource storage variables that serve the direct connection between species growth and external resource availability. Mathematical analysis for the global dynamics of the model is carried out by using the monotone dynamical system theory. It is shown that the limiting system of the model basically exhibits the familiar Lotka-Volterra alternatives: competitive exclusion, coexistence, and bi-stability, and most of these results can be carried over to the original model.

MSC:

92D40 Ecology
37N25 Dynamical systems in biology
34D05 Asymptotic properties of solutions to ordinary differential equations
34D23 Global stability of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Andersen T. (1997). Pelagic Nutrient Cycles. Springer, New York
[2] Caperon J. (1968). Population growth response of Isochrysis galbana to nitrate variation at limiting concentrations. Ecology 49: 866–872 · doi:10.2307/1936538
[3] Cunningham A., Nisbet R.M. (1980). Time lag and c0-perativity in the transient growth dynamics of microalage. J. Theor. Biol. 84: 189–203 · doi:10.1016/S0022-5193(80)80003-8
[4] Cunningham, A., Nisbet, R.M.: Transient and oscillations in continuous culture. In: Bazin, M.J. (ed.) Mathematics in Microbiology. Academic, New York, pp.77–103 · Zbl 0544.92020
[5] De Leenheer P., Levin S., Sontag E., Klausmeier C. (2006). Global stability in a chemostat with multiple nutrients. J. Math. Biol. 52: 419–438 · Zbl 1094.92058 · doi:10.1007/s00285-005-0344-4
[6] Droop M.R. (1968). Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis Lutheri. J. Mar. Biol. Assoc. UK 48: 689–733 · doi:10.1017/S0025315400019238
[7] Droop M.R. (1973). Some thoughts on nutrient limitation in algae. J. Phycol. 9: 264–272
[8] Droop M.R. (1974). The nutrient status of algae cells in continuous culture. J. Mar. Biol. Assoc. UK 54: 825–855 · doi:10.1017/S002531540005760X
[9] Gopalsamy K. (1992). Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer, Dordrecht · Zbl 0752.34039
[10] Grover J.P. (1991). Resource Competition in a variable environment: phytoplankton growing according to the variable-internal-stores model. Am. Nat. 138: 811–835 · doi:10.1086/285254
[11] Grover J.P. (1992). Constant- and variable-yield models of population growth: responses to envionmental variability and implications for competition. J. Theor. Biol. 158: 409–428 · doi:10.1016/S0022-5193(05)80707-6
[12] Grover J.P. (1997). Resource Competition, Population and Community Biology Series, 19. Chapman & Hall, New York
[13] Hirsch M.W., Hanisch H., Gabriel J.P. (1985). Differential equation models of some parasitic infections: methods for the study of asymptotic behavior. Commun. Pure Appl. Math. 38: 733–753 · Zbl 0637.92008 · doi:10.1002/cpa.3160380607
[14] Hirsch M.W., Smith H.L., Zhao X.-Q. (2001). Chain transitivity, attractivity and strong repellors for semidynamical systems. J. Dyn. Differ. Equ. 13: 107–131 · Zbl 1129.37306 · doi:10.1023/A:1009044515567
[15] Hsu S.B., Smith H.L., Waltman P. (1996). Competitive exclusion and coexistence for competitive systems on ordered Banach spaces. Trans. AMS 348: 4083–4094 · Zbl 0860.47033 · doi:10.1090/S0002-9947-96-01724-2
[16] Hsu S.B., Cheng K.S., Hubbell S.P. (1981). Exploitative competition of microorganism for two complementary nutrients in continuous culture. SIAM J. Appl. Math. 41: 422–444 · Zbl 0498.92014 · doi:10.1137/0141036
[17] Klausmeier C., Litchman E., Levin S. (2004). Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnol. Oceanogr. 49: 1463–1470 · doi:10.4319/lo.2004.49.4_part_2.1463
[18] Koch A.L. (2005). Bacterial choices for consumption of multiple resources for current and future needs. Microb. Ecol. 49: 183–197 · doi:10.1007/s00248-003-1053-4
[19] Legović T., Cruzado A. (1997). A model of phytoplankton growth on multiple nutrients based on the Michaelis–Menten–Monod uptake, Droop’s growth and Liebig’s law. Ecol. Modell. 99: 19–31 · doi:10.1016/S0304-3800(96)01919-9
[20] Leon J.A., Tumpson D.B. (1975). Competition between two species for two complementary or substitutable resources. J. Theor. Biol. 50: 185–201 · doi:10.1016/0022-5193(75)90032-6
[21] Li, B., Smith, H.L.: Competition for essential resources: a brief review. In: Ruan, S., Wolkowicz, G.S.K., Wu, J. (eds.) Dynamical Systems and Their Applications in Biology. Fields Inst. Commun. 36, 213–227 (2003) · Zbl 1162.92334
[22] Mischiakow K., Smith H.L., Thieme H. (1995). Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions. Trans. AMS 347: 1669–1685 · Zbl 0829.34037 · doi:10.2307/2154964
[23] Morel F.M.M. (1987). Kinetics of nutrient uptake and growth in phytoplankton. J. Phycol. 23: 137–150
[24] Narang A., Pilyugin S.S. (2005). Towards an integrated physiological theory of microbial growth: from subcellular variables to population dynamics. Math. Biosci. Eng. 2: 173–210 · Zbl 1061.92050
[25] Smith H.L., Thieme H.R. (2001). Stable coexistence and bi-stability for competitive systems on ordered Banach spaces. J. Differ. Equ. 176: 195–2221 · Zbl 1064.47075 · doi:10.1006/jdeq.2001.3981
[26] Smith H.L., Waltman P. (1994). Competition for a single limiting resource in continuous culture: the variable-yield model. SIAM J. Appl. Math. 54: 1113–1131 · Zbl 0829.92020 · doi:10.1137/S0036139993245344
[27] Smith H.L., Waltman P. (1995). The Theory of the Chemostat. University Press, Cambridge · Zbl 0860.92031
[28] Smith H.L. (1995). Monotone Dynamical Systems. AMS, Providence · Zbl 0821.34003
[29] Smith H.L. (1986). Competing subcommunities of mutualists and a generalized Kamke theorem. SIAM J. Appl. Math. 46: 856–874 · Zbl 0609.92033 · doi:10.1137/0146052
[30] Smith H.L., Zhao X.-Q. (1999). Dynamics of a periodically pulsed bio-reactor model. J. Differ. Equ. 155: 368–404 · Zbl 0930.35085 · doi:10.1006/jdeq.1998.3587
[31] Thieme H.R. (1993). Persistence under relaxed point-dissipativity (with application to an endemic model). SIAM J. Math. Anal. 24: 407–435 · Zbl 0774.34030 · doi:10.1137/0524026
[32] Tilman D. (1982). Resource competition and Community Structure. Princeton University Press, Princeton
[33] Tilman D. (1988). Plant Strategies and the Dynamics and Structure of Plant Communities. Printceton University Press, Princeton
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.