×

Toric fiber products. (English) Zbl 1129.13030

Let \(s_1, \ldots, s_r, t_1, \ldots, t_r\) be positive integers and consider two sets of variables \[ \{x_{ij}\}_{1\leq i\leq r, 1\leq j\leq s_i} = :x,\;\{y_{ij}\}_{1\leq i\leq r, 1\leq j\leq t_i} = :y. \] Define a multigraduation by \(\deg(x_{ij})=\deg (y_{ik})=a^{(i)}\in\mathbb Z^d\) and assume there exist \(\omega\in\mathbb Q^d\) such that \({}^t\omega\cdot a^{(i)}=1\) for all \(i\). Let \(\mathcal A=\{a^{(1)}, \ldots, a^{(r)}\}\) and \(I, J\) be homogeneous ideals in \(K[x]\) and \(K[y]\) respectively. Let \(R=K[x]/I\) and \(S=K[y]/J\) and \(\Phi_{I,J}:K[z]\to R\otimes_K S\) be defined by \(\Phi_{I,J}(z_{ijk})=x_{ij}\otimes y_{ik}\) with \(z=(z_{ijk})_{1\leq i\leq r, 1\leq j\leq s_i, 1\leq k\leq t_i}\). The kernel of \(\Phi_{I,J}\) is called the toric fibre product \(I\times_\mathcal A J\) of \(I\) and \(J\). A Gröbner basis of \(I\times_\mathcal A J\) is explicitly constructed in terms of a Gröbner basis of \(I\) and a Gröbner basis of \(J\) under the assumption that \(\mathcal A\) is a linearly independent set. The result is applied to algebraic statistics.

MSC:

13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
14Q99 Computational aspects in algebraic geometry

References:

[1] Allman, E.; Rhodes, J., Phylogenetic ideals and varieties for the general Markov model (2004), preprint
[2] Aoki, S.; Takemura, A., Minimal basis for a connected Markov chain over \(3 \times 3 \times K\) contingency tables with fixed two-dimensional marginals, Aust. N. Z. J. Stat., 45, 2, 229-249 (2003) · Zbl 1064.62068
[3] Buczyńska, W.; Wiśniewski, J., On phylogenetic trees—A geometer’s view (2006), preprint
[4] De Loera, J.; Onn, S., All rational polytopes are transportation polytopes and all polytopal integer sets are contingency tables, (Integer Programming and Combinatorial Optimization. Integer Programming and Combinatorial Optimization, Lecture Notes in Comput. Sci., vol. 3064 (2004), Springer: Springer Berlin), 338-351 · Zbl 1092.90029
[5] Diaconis, P.; Sturmfels, B., Algebraic algorithms for sampling from conditional distributions, Ann. Statist., 26, 363-397 (1998) · Zbl 0952.62088
[6] Dobra, A.; Sullivant, S., A divide-and-conquer algorithm for generating Markov bases of multi-way tables, Comput. Statist., 19, 3, 347-366 (2004) · Zbl 1063.62085
[7] L.D. Garcia, Polynomial constraints of Bayesian networks with hidden variables, preprint, 2005; L.D. Garcia, Polynomial constraints of Bayesian networks with hidden variables, preprint, 2005
[8] Garcia, L. D.; Stillman, M.; Sturmfels, B., Algebraic geometry for Bayesian networks, J. Symbolic Comput., 39, 331-355 (2005) · Zbl 1126.68102
[9] Ha, H. T., Box-shaped matrices and the defining ideals of certain blowup surfaces, J. Pure Appl. Algebra, 167, 203-224 (2002) · Zbl 1044.13004
[10] Hemmecke, R.; Malkin, P., Computing generating sets of lattice ideals (2005), preprint
[11] Hoşten, S.; Sullivant, S., Gröbner bases and polyhedral geometry of reducible and cyclic models, J. Combin. Theory Ser. A, 100, 277-301 (2002) · Zbl 1044.62065
[12] Lauritzen, N., Homogeneous Buchberger algorithms and Sullivant’s computational commutative algebra challenge (2005), preprint
[13] Miller, E.; Sturmfels, B., Combinatorial Commutative Algebra, Grad. Texts in Math., vol. 227 (2005), Springer: Springer New York · Zbl 1090.13001
[14] Sturmfels, B., Gröbner Bases and Convex Polytopes, Univ. Lecture Ser., vol. 8 (1996), Amer. Math. Soc.: Amer. Math. Soc. Providence · Zbl 0856.13020
[15] Sturmfels, B.; Sullivant, S., Toric ideals of phylogenetic invariants, J. Comput. Biol., 12, 204-228 (2005) · Zbl 1391.13058
[16] Székely, L.; Steel, M.; Erdös, P., Fourier calculus on evolutionary tree, Adv. in Appl. Math., 14, 200-216 (1993) · Zbl 0794.05014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.