×

Selective control of the observables in the ensemble of quantum mechanical molecular systems. (English. Russian original) Zbl 1145.93307

Autom. Remote Control 68, No. 8, 1322-1332 (2007); translation from Avtom. Telemekh. 2007, No. 8, 32-43 (2007).
Summary: A new approach to synthesize algorithms for selective control of the observables in quantum mechanical systems in the presence of additional constraints during the whole period of control is proposed. Analytic results of achieving the goal of control under some additional assumptions were obtained. It was demonstrated that the error in achieving the goal of control is proportionate to the error in prescribing the initial state of system and the error in realizing the control action. Numerical results for the problem of selective control for energy of hydrogen molecules \((H_{2})\) with different isotopes are represented. The proposed algorithms are easy to design.

MSC:

93A30 Mathematical modelling of systems (MSC2010)
93B51 Design techniques (robust design, computer-aided design, etc.)
81S99 General quantum mechanics and problems of quantization
93B50 Synthesis problems
Full Text: DOI

References:

[1] Butkovskii, A.G. and Samoilenko, Yu.I., Upravlenie kvantovomekhanicheskimi protsessami, Moscow: Nauka, 1984. Translated into English under the title Control of Quantum Mechanical Processes and Systems, Dordrecht: Academic, 1990.
[2] Pearson, B.J., White, J.L., Weinacht, T.C., et al., Coherent Control Using Adaptive Learning Algorithms, Phys. Rev. A, 2001, vol. 63, no. 6, pp. 634–676. · doi:10.1103/PhysRevA.63.063412
[3] Brixner, T., Kiefer, B., and Gerber, G., Problem Complexity in Femtosecond Quantum Control, Chem. Phys., 2001, vol. 267, pp. 241–246. · doi:10.1016/S0301-0104(01)00223-3
[4] Rice, S. and Zhao, M., Optical Control of Quantum Dynamics, New York: Wiley, 2000.
[5] Brown, E. and Rabitz, H., Some Mathematical and Algorithmic Challenges in the Control of Quantum Dynamics Phenomena, J. Math. Chem., 2002, vol. 31,no. 1, pp. 17–63. · Zbl 0996.81001 · doi:10.1023/A:1015482329835
[6] Mabuchi, H. and Khaneja, N., Principles and Application of Control in Quantum Systems, Int. J. Robust Nonlinear Control, 2005, no. 15, pp. 646–667. · Zbl 1090.93004
[7] Bloembergen, N. and Zewail, A.H., Energy Distribution in Isolated Molecules and the Question of Mode-selective Laser Chemistry Revisited, J. Chem. Phys., 1984, vol. 88, pp. 5459–5465. · doi:10.1021/j150667a004
[8] Goggin, M.E. and Milonni, P.W., Driven Morse Oscillator: Classical Chaos, Quantum Theory and Photodissociation, Phys. Rev. A, 1998, vol. 37, no. 3, pp. 796–806. · doi:10.1103/PhysRevA.37.796
[9] Chelkowski, S. and Bandrauk, A.D., Coherent Interaction of an Ultrashort Zero-Area Laser Pulse with a Morse Oscillator, Phys. Rev. A, 1990, vol. 41, pp. 6480–6484. · doi:10.1103/PhysRevA.41.6480
[10] Goggin, M.E. and Milonni, P.W., Driven Morse Oscillator: Classical Chaos and Quantum Theory for Two-Frequency Dissociation, Phys. Rev. A, 1998, vol. 38, no. 10, pp. 5174–5181. · doi:10.1103/PhysRevA.38.5174
[11] Liu, W.K., Wu, B., and Yuan, J.M., Nonlinear Dynamics of Chirped Pulse Excitation and Dissociation of Diatomic Molecules, Phys. Rev. Lett., 1995, vol. 75,no. 7, pp. 1292–1295. · doi:10.1103/PhysRevLett.75.1292
[12] Lin, J.T., Lai, T.L., Chuu, D.S., and Jiang, T.F., Quantum Dynamics of a Diatomic Molecule under Chirped Laser Pulses, J. Phys. B, 1998, vol. 31, pp. 117–126. · doi:10.1088/0953-4075/31/4/002
[13] Anan’evskii, M.S. and Fradkov, A.L., Control of the Observables in the Finite-Level Quantum Systems, Avtom. Telemekh., 2005, no. 5, pp. 63–75.
[14] Ananyevskiy, M.S., Vetchinkin, A.S., Sarkisov, O.M., et al., Quantum Control of Dissociation of an Iodine Molecule by One and Two Femtosecond Laser Pulses Excitation, Proc. Int. Conf. ”Physics and Control 2005,” St. Petersburg, 2005, pp. 636–641.
[15] Turinici, G., Ramakhrishna, V., Li, B., and Rabitz, H., Optimal Discrimination of Multiple Quantum Systems: Controllability Analysis, J. Phys. A, 2004, vol. 37, pp. 273–282. · Zbl 1042.82617 · doi:10.1088/0305-4470/37/1/019
[16] Miroshnik, I.V., Nikiforov, I.V., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami, St. Petersburg: Nauka, 2000. Translated into English under the title Nonlinear and Adaptive Control of Complex Systems, Dordrecht: Academic, 1999.
[17] Peirce, A., Dahleh, M., and Rabitz, H., Optimal Control of Quantum Mechanical Systems: Existence, Numerical Approximations, and Applications, Phys. Rev. A, 1988, vol. 37, pp. 4950–4964. · doi:10.1103/PhysRevA.37.4950
[18] von Neumann, J.V., Mathematische Grundlagen der Quantenmechanik, Berlin: Springer-Verlag, 1932. Translated under the title Matematicheskie osnovy kvantovoi mekhaniki, Moscow: Nauka, 1964.
[19] Dirac, P., The Principles of Quantum Mechanics, Oxford: Clarendon, 1930. Translated under the title Printsipy kvantovoi mekhaniki, Moscow: Nauka, 1979.
[20] Flugge, S., Practical Quantum Mechanics, New York: Springer-Verlag, vol. I, 1974. Translated under the title Zadachi po kvantovoi mekhanike. 1, Moscow: Mir, 1974.
[21] Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Paris: Dunod et Gauthier-Villars, 1969. Translated under the title Nekotorye metody resheniya nelineinykh kraevykh zadach, Moscow: Mir, 1972.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.