×

Geometric evolution equations in critical dimensions. (English) Zbl 1127.58003

There is a difference in the behaviours of two geometric evolution equations that otherwise show a lot of similarities: the harmonic map heat flow and the Yang-Mills heat flow. Equivariant solutions in the critical dimension can blow up for the former flow [K.-C. Chang, W.-Y. Ding and R. Ye, J. Differ.Geom.36, 507–515 (1992; Zbl 0765.53026)], but they do not for the latter [A. E. Schlatter, M. Struwe and A. S. Tahvildar-Zadeh, Am.J. Math.120, 117–128 (1998; Zbl 0938.58007)].
The current paper discusses what could be the reason for that different behaviour. Basically, the answer is that the calculations for equivariant Yang-Mills solutions behave like they had degree 2 singularities, while equivariant singularities to the harmonic map heat flow want to have degree 1. To support this statement, the authors prove two things: (1) The equivariant harmonic map heat flow does not blow up if the group action forces any possible singularity to have degree \(>1\). (2) The Yang-Mills heat equation, reduced by symmetry and modified in such a way that singularities would correspond to degree 1 singularities of the harmonic map flow, does blow up in finite time for suitable initial data.

MSC:

58D25 Equations in function spaces; evolution equations
58E20 Harmonic maps, etc.
Full Text: DOI

References:

[1] Cazenave T., Shatah J. and Tavildah-Zadeh A.S. (1998). Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang–Mills fields. Ann. Inst. Henri Poincaré (Physique théorique) 68: 315–349 · Zbl 0918.58074
[2] Chang K.-C., Ding W.-Y. and Ye R. (1992). Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36: 507–515 · Zbl 0765.53026
[3] Chang, K.-C., Ding, W.-Y.: A result on the global existence for heat flows of harmonic maps from D 2 into S 2. In: Coron, J.-M., Ghidaglia, J.-M., Hélein, F (eds.) Nematics. Defects, Singularities And Patterns in Nematic Liquid Crystals: Mathematical And Physical Aspects. In: Proceedings of NATO Advance Research Workshop, Orsay, France, May 28–June 1, 1990. NATO ASI Series, Series C: Mathematical and Physical Sciences, vol 332. Kluwer, Dordrecht (1990)
[4] Chen Y. and Ding W.-Y. (1990). Blow-up and global existence of heat flow of harmonic maps. Invent. Math. 99: 567–578 · Zbl 0674.58019 · doi:10.1007/BF01234431
[5] Coron J.-M. and Ghidaglia J.-M. (1989). Explosion en temps fini pour le flot des applications harmoniques. C. R. Acad. Sci., Paris, Ser. I 308: 339–344 · Zbl 0679.58017
[6] Donaldson S.K., Kronheimer P.B. (1990) The Geometry of Four-Manifolds. Clarendon Press, Oxford · Zbl 0820.57002
[7] Dumitrascu O. (1982). Soluţii echivariante ale ecuaţiilor Yang–Mills. Stud. Cerc. Mat. 34: 329–333 · Zbl 0529.58016
[8] Eells J. and Lemaire L. (1978). A report on harmonic map. Bull. London Math. Soc. 10: 1–68 · Zbl 0401.58003 · doi:10.1112/blms/10.1.1
[9] Eells J. and Lemaire L. (1988). Another report on harmonic map. Bull. London Math. Soc. 20: 385–524 · Zbl 0669.58009 · doi:10.1112/blms/20.5.385
[10] Eells J. and Sampson J.H. (1964). Harmonic mappings of Riemannian manifolds. Am. J. Math. 86: 109–160 · Zbl 0122.40102 · doi:10.2307/2373037
[11] Grotowski J.F. (1993). Harmonic map heat flow for axially symmetric data. Manus. Math. 73: 207–228 · Zbl 0764.58007 · doi:10.1007/BF02567639
[12] Grotowski J.F. (2001). Finite time blow-up for the Yang–Mills flow in higher dimensions. Math. Z 237: 321–333 · Zbl 1009.53049 · doi:10.1007/PL00004871
[13] Hélein F. (2002). Harmonic Maps, Conservation Laws and Moving Frames. Cambridge University Press, Cambridge
[14] Itoh M. (1981). Invariant connections and Yang–Mills solutions. Trans. Am. Math. Soc. 267: 229–236 · Zbl 0473.53043 · doi:10.1090/S0002-9947-1981-0621984-5
[15] Jost, J.: Harmonic mappings between Riemannian manifolds. In: Proceedings Centre for Mathematics and its Applications, vol. 4. Australian National University Press, Canberra (1984) · Zbl 0542.58002
[16] Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and quasilinear equations of parabolic type and variational problems. Translations of Mathematical Monographs 23: American Mathematical Society, Providence (1968)
[17] Karcher H. and Wood J.C. (1984). Non-existence results and growth properties for harmonic maps and forms. J. Reine Angew. Math. 353: 165–180 · Zbl 0544.58008
[18] Kobayashi S. and Nomizu K. (1963). Foundations of Differential Geometry, vol.1. Interscience Publishers, New York · Zbl 0119.37502
[19] Lemaire L. (1978). Applications harmoniques de surfaces riemanniennes. J. Differ. Geom. 13: 51–78 · Zbl 0388.58003
[20] Naito H. (1994). Finite-time blowing-up for the Yang–Mills gradient flow in higher dimensions. Hokkaido Math. J. 23: 451–464 · Zbl 0827.53022
[21] Råde J. (1992). On the Yang–Mills heat equation in two and three dimensions. J. Reine Angew. Math. 431: 123–163 · Zbl 0760.58041
[22] Schlatter A. (1997). Long time behaviour of the Yang–Mills flow in four dimensions. Anal. Global Anal. Geom. 15: 1–25 · Zbl 0884.58090 · doi:10.1023/A:1006541305639
[23] Schlatter A., Struwe M. and Tavildah-Zadeh A.S. (1998). Global existence of the equivariant Yang–Mills heat flow in four space dimensions. Am. J. Math. 120: 117–128 · Zbl 0938.58007 · doi:10.1353/ajm.1998.0004
[24] Struwe M. (1985). On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60(4): 558–581 · Zbl 0595.58013 · doi:10.1007/BF02567432
[25] Struwe M. (1988). On the evolution of harmonic maps in higher dimensions. J. Differ. Geom. 28(3): 485–502 · Zbl 0631.58004
[26] Struwe M. (1994). The Yang–Mills flow in four dimensions. Calc. Var. Partial Differ. Equ. 2: 123–150 · Zbl 0807.58010 · doi:10.1007/BF01191339
[27] Struwe, M.: Nonlinear partial differential equations in differential geometry. In: Hardt, R. et al (ed) Lectures from the 2nd Summer Geometry Institute Held in July 1992 at Park City, Utah, USA (IAS/Park City Math. Ser. 2, pp. 257–339). American Mathematical Society, Providence (1996)
[28] Topping P. (2004). Repulsion and quantization in almost-harmonic maps and asymptotics of the harmonic map flow. Annals Math. 159: 465–534 · Zbl 1065.58007 · doi:10.4007/annals.2004.159.465
[29] Topping, P.: Bubbling of almost-harmonic maps between 2-spheres at points of zero energy density. In: Baird, P. et al (eds.)Variational Problems in Riemannian Geometry: Bubbles, Scans And Geometric Flows. Progress in Nonlinear Differential Equations And Their Applications 59, 33–42 (2004) · Zbl 1065.58008
[30] van den Berg J.B., Hulshof J. and King J.R. (2003). Formal asymptotics of bubbling in the harmonic map heat flow. SIAM J. Math. Anal. 63: 1682–1717 · Zbl 1037.35023 · doi:10.1137/S0036139902408874
[31] Wilhelmy, L.: Global Equivariant Yang–Mills Connections on the 1 + 4 Dimensional Minkowski Space. Doctoral Dissertation, ETH Zürich (Diss. ETH No. 12155) (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.