×

Genus characterizes the complexity of certain graph problems: Some tight results. (English) Zbl 1121.68086

Summary: We study the fixed-parameter tractability, subexponential time computability, and approximability of the well-known NP-hard problems: independent set, vertex cover, and dominating set. We derive tight results and show that the computational complexity of these problems, with respect to the above complexity measures, is dependent on the genus of the underlying graph. For instance, we show that, under the widely-believed complexity assumption \(W[1] \neq\) FPT, independent set on graphs of genus bounded by \(g_{1}(n)\) is fixed parameter tractable if and only if \(g_{1}(n) = o(n^{2})\), and dominating set on graphs of genus bounded by \(g_{2}(n)\) is fixed parameter tractable if and only if \(g_{2}(n) = n^{o(1)}\). Under the assumption that not all SNP problems are solvable in subexponential time, we show that the above three problems on graphs of genus bounded by \(g_{3}(n)\) are solvable in subexponential time if and only if \(g_{3}(n) = o(n)\). We also show that the independent set, the kernelized vertex cover, and the kernelized dominating set problems on graphs of genus bounded by \(g_{4}(n)\) have PTAS if \(g_{4}(n) = o(n /\log n)\), and that, under the assumption P \(\neq\) NP, the independent set problem on graphs of genus bounded by \(g_{5}(n)\) has no PTAS if \(g_{5}(n) = \Omega (n)\), and the vertex cover and dominating set problems on graphs of genus bounded by \(g_{6}(n)\) have no PTAS if \(g_{6}(n) = n^{\Omega (1)}\).

MSC:

68R10 Graph theory (including graph drawing) in computer science
68Q17 Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.)
68Q25 Analysis of algorithms and problem complexity
Full Text: DOI

References:

[1] Alber, J.; Fan, H.; Fellows, M.; Fernau, H.; Niedermeier, R.; Rosamond, F.; Stege, U., A refined search tree technique for dominating set on planar graphs, J. Comput. System Sci., 71, 385-405 (2005) · Zbl 1101.68712
[2] Alber, J.; Fellows, M.; Niedermeier, R., Polynomial time data reduction for dominating set, J. ACM, 51, 363-384 (2004) · Zbl 1192.68337
[3] Alber, J.; Fernau, H.; Niedermeier, R., Parameterized complexity: Exponential speedup for planar graph problems, J. Algorithms, 52, 26-56 (2004) · Zbl 1085.68102
[4] Arora, S.; Karger, D.; Karpinski, M., Polynomial time approximation schemes for dense instances of NP-hard problems, J. Comput. System Sci., 58, 193-210 (1999) · Zbl 0937.68160
[5] Arora, S.; Lund, C.; Motwani, R.; Sudan, M.; Szegedy, M., Proof verification and hardness of approximation problems, J. ACM, 45, 501-555 (1998) · Zbl 1065.68570
[6] Ausiello, G.; Crescenzi, P.; Gambosi, G.; Kann, V.; Marchetti-Spaccamela, A.; Protasi, M., Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties (1999), Springer-Verlag: Springer-Verlag Berlin · Zbl 0937.68002
[7] Baker, B., Approximation algorithms for NP-complete problems on planar graphs, J. ACM, 41, 153-180 (1994) · Zbl 0807.68067
[8] Cai, L.; Juedes, D., On the existence of subexponential parameterized algorithms, J. Comput. System Sci., 67, 789-807 (2004) · Zbl 1091.68121
[9] Chen, J., Algorithmic graph embeddings, Theoret. Comput. Sci., 181, 247-266 (1987) · Zbl 0901.68149
[10] Chen, J.; Chor, B.; Fellows, M.; Huang, X.; Juedes, D.; Kanj, I.; Xia, G., Tight lower bounds for certain parameterized NP-hard problems, Inform. and Comput., 201, 216-231 (2005) · Zbl 1161.68476
[11] Chen, J.; Huang, X.; Kanj, I.; Xia, G., Strong computational lower bounds via parameterized complexity, J. Comput. System Sci., 72, 1346-1367 (2006) · Zbl 1119.68092
[12] Chen, J.; Kanchi, S.; Kanevsky, A., A note on approximating graph genus, Inform. Process. Lett., 61, 317-322 (1997) · Zbl 1337.68126
[13] Chen, J.; Kanj, I.; Jia, W., Vertex cover: Further observations and further improvements, J. Algorithms, 41, 280-301 (2001) · Zbl 1017.68087
[14] Chen, J.; Kanj, I.; Perkovic, L.; Sedgwick, E.; Xia, G., Genus characterizes the complexity of graph problems: Some tight results, (ICALP ’03. ICALP ’03, Lecture Notes in Comput. Sci., vol. 2719 (2003)), 845-856 · Zbl 1039.68092
[15] Chen, J.; Kanj, I.; Xia, G., A note on subexponential parameterized complexity, DePaul University Research Report No. 03-002, 2003, available at
[16] Demaine, E.; Fomin, F.; Hajiaghayi, M.; Thilikos, D., Subexponential parameterized algorithms on bounded-genus graphs and \(H\)-minor-free graphs, J. ACM, 52, 866-893 (2005) · Zbl 1326.05152
[17] E. Demaine, M. Hajiaghayi, The bidimensionality theory and its algorithmic applications, The Computer Journal (2007), in press; E. Demaine, M. Hajiaghayi, The bidimensionality theory and its algorithmic applications, The Computer Journal (2007), in press
[18] Demaine, D.; Hajiaghayi, M.; Thilikos, D., Exponential speedup of fixed-parameter algorithms for classes of graphs excluding single-crossing graphs as minors, Algorithmica, 41, 245-267 (2005) · Zbl 1065.68110
[19] Djidjev, H.; Venkatesan, S., Planarization of graphs embedded on surfaces, (WG ’95. WG ’95, Lecture Notes in Comput. Sci., vol. 1017 (1995)), 62-72 · Zbl 1533.05067
[20] Downey, R.; Fellows, M., Parameterized Complexity (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0961.68533
[21] Ellis, J.; Fan, H.; Fellows, M., The dominating set problem is fixed parameter tractable for graphs of bounded genus, J. Algorithms, 52, 152-168 (2004) · Zbl 1072.68079
[22] Fleischner, H.; Földes, S.; Szeider, S., Remarks on the concept of robust algorithms, RUTCOR Research Report No. 26-2001, 2001, available at
[23] F. Fomin and D. Thilikos, Dominating sets in planar graphs: Branch-width and exponential speed-up, in: Proc. 14th ACM-SIAM Symp. Discrete Algorithms, SODA ’03, 2003, pp. 168-177; F. Fomin and D. Thilikos, Dominating sets in planar graphs: Branch-width and exponential speed-up, in: Proc. 14th ACM-SIAM Symp. Discrete Algorithms, SODA ’03, 2003, pp. 168-177 · Zbl 1094.68610
[24] Fomin, F.; Thilikos, D., Fast parameterized algorithms for graphs on surfaces: Linear kernel and exponential speed-up, (ICALP ’04. ICALP ’04, Lecture Notes in Comput. Sci., vol. 3142 (2004)), 581-592 · Zbl 1099.68077
[25] Garey, M.; Johnson, D., Computers and Intractability: A Guide to the Theory of NP-Completeness (1979), Freeman: Freeman San Francisco · Zbl 0411.68039
[26] Gross, J.; Tucker, T., Topological Graph Theory (1987), Wiley-Interscience: Wiley-Interscience New York · Zbl 0621.05013
[27] Hochbaum, D., Efficient bounds for the stable set, vertex cover and set packing problems, Discrete Appl. Math., 6, 243-254 (1983) · Zbl 0523.05055
[28] Impagliazzo, R.; Paturi, R.; Zane, F., Which problems have strongly exponential complexity?, J. Comput. System Sci., 63, 512-530 (2001) · Zbl 1006.68052
[29] D. Johnson, M. Szegedy, What are the least tractable instances of max. independent set?, in: Proc. 10th Ann. ACM-SIAM Symp. on Discrete Algorithms, SODA ’99, 1999, pp. 927-928; D. Johnson, M. Szegedy, What are the least tractable instances of max. independent set?, in: Proc. 10th Ann. ACM-SIAM Symp. on Discrete Algorithms, SODA ’99, 1999, pp. 927-928 · Zbl 0929.68089
[30] Kanj, I.; Perkovic, L., Improved parameterized algorithms for planar dominating set, (MFCS ’02. MFCS ’02, Lecture Notes in Comput. Sci., vol. 2420 (2002)), 399-410 · Zbl 1014.68218
[31] Lipton, R.; Tarjan, R., Applications of a planar separator theorem, SIAM J. Comput., 9, 615-627 (1980) · Zbl 0456.68077
[32] Nemhauser, G.; Trotter, L., Vertex packing: Structural properties and algorithms, Math. Program., 8, 232-248 (1975) · Zbl 0314.90059
[33] Niedermeier, R., Invitation to Fixed-Parameter Algorithms (2006), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 1095.68038
[34] Papadimitriou, C.; Yannakakis, M., Optimization, approximation and complexity classes, J. Comput. System Sci., 43, 425-440 (1991) · Zbl 0765.68036
[35] Thomassen, C., The graph genus problem is NP-complete, J. Algorithms, 10, 568-576 (1989) · Zbl 0689.68071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.