×

A novel LMI-based optimization algorithm for the guaranteed estimation of the domain of attraction using rational Lyapunov functions. (English) Zbl 1269.34062

Summary: In this article we deal with the classical problem of estimating the domain of attraction (DOA) of autonomous dynamical systems. We propose a new LMI estimation method based on recent results from the mathematical theory of moments. In contrast to previous works we exploit the advantages of rational Lyapunov functions to enhance the estimates. Several examples illustrate the estimation method.

MSC:

34D20 Stability of solutions to ordinary differential equations
34D08 Characteristic and Lyapunov exponents of ordinary differential equations

References:

[1] Lyapunov, A., Problème général de la stabilité du mouvement, Ann. Fac. Sci. Toulouse, 9, 203-474 (1907), (Translation of a paper published in Comm. Soc. math. Kharkow 1893, in Russian). · JFM 38.0738.07
[2] Hahn, W., Stability of motion, Die Grundlehren der mathematischen Wissenschaften, Band 138 (1967), Springer: Springer Berlin · Zbl 0189.38503
[3] Khalil, H. K., Nonlinear Systems (1992), MacMillan: MacMillan New York · Zbl 0626.34052
[5] Chiang, H. D.; Thorp, J. S., Stability regions of nonlinear dynamical systems: a constructive methodology, IEEE Trans. Automat. Control, 34, 12, 1229-1241 (1989) · Zbl 0689.93046
[7] Genesio, R.; Tartaglia, M.; Vicino, A., On the estimation of aymptotic stability regions: state of the art and new proposals, IEEE Trans. Automat. Control, 30, 8, 747-755 (1985) · Zbl 0568.93054
[9] Hewit, J. R.; Storey, C., Comparison of numerical methods in stability analysis, Int. J. Control, 10, 6, 687-701 (1969) · Zbl 0184.18603
[10] Levin, A., An analytical method for estimating the domain of attraction for polynomial differential equations, IEEE Trans. Automat. Control, 36, 12, 2471-2475 (1994) · Zbl 0825.93680
[11] Michel, A. N.; Sarabudla, N. R.; Miller, R. K., Stability analysis of complex dynamical systems—some computational methods, Circuits Systems Signal Process., 1, 2, 171-202 (1982) · Zbl 0493.93040
[12] Tesi, A.; Villoresi, F.; Genesio, R., On the stability domain estimation via a quadratic Lyapunov function: convexity and optimality properties for polynomial systems, IEEE Trans. Automat. Control, 41, 1650-1657 (1996) · Zbl 0870.34057
[13] Tibken, B.; Hofer, E. P.; Demir, C., Guaranteed regions of attraction for dynamical polynomial systems, (Leitmann, G.; Udwadia, F.; Kryazhimskii, A. V., Dynamics and Control (1999), Gordon and Breach Publishers: Gordon and Breach Publishers London), 119-128
[16] Vannelli, A.; Vidysagar, M., Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems, Automatica, 21, 1, 69-80 (1985) · Zbl 0559.34052
[17] Zubov, V. I., Questions of the theory of Lyapunov’s second method, Construction of the general solution in the region of asymptotical stability, Prikl. Mat. Meh., 19, 179-210 (1955) · Zbl 0066.33704
[19] Aneke, S. J., Mathematical modelling of drug resistant malaria parasites and vector populations, Math. Meth. Appl. Sci., 25, 4, 335-346 (2002) · Zbl 0994.92025
[21] FitzHugh, R., Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1, 445-466 (1961)
[22] Hénon, M.; Heiles, C., The applicability of the third integral of motion: some numerical experiments, Astron. J., 69, 1, 73-79 (1964)
[23] Hindmarsh, J. L.; Rose, R. M., A model of the nerve impulse using two first-order differential equations, Nature, 296, 162-164 (1982)
[24] Keener, J.; Sneyd, J., Mathematical Physiology (1998), Springer: Springer New York, Berlin, Heidelberg · Zbl 0913.92009
[25] Koch, Ch., Biophysics of Computation (1999), Oxford University Press: Oxford University Press Oxford
[29] Bronstein, I.; Semendjajew, K. A.; Musiol, G.; Mühlig, H., Taschenbuch der Mathematik (2001), Verlag Harri Deutsch: Verlag Harri Deutsch Thun und Frankfurt am Main · Zbl 1121.00301
[31] Boyd, S.; El Ghaoui, S. L.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in systems and control theory, SIAM, Philadelphia, 1994, Invariance under coefficient perturbation, IEEE Trans. Acoust. Speech Signal Process, 28, 6, 660-665 (1980) · Zbl 0527.93019
[36] Vandenberghe, L.; Boyd, S., Semidefinite programming, SIAM Rev., 38, 1, 49-95 (1996) · Zbl 0845.65023
[37] Davison, E. J.; Kurak, E. M., A computational method for determining quadratic Lyapunov functions for non-linear systems, Automatica, 7, 627-636 (1971) · Zbl 0225.34027
[38] Lasserre, J. B., Global optimization with polynomials and the problem of moments, SIAM J. Optim., 11, 3, 796-817 (2001) · Zbl 1010.90061
[39] La Salle, J.; Lefschetz, S., Stability by Liapunov’s Direct Method (1961), Academic Press: Academic Press New York, London · Zbl 0098.06102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.