×

Harmonic maps and asymptotic Teichmüller space. (English) Zbl 1132.30025

The asymptotic behavior of the Beltrami coefficient of a harmonic mapping is studied and certain compactness properties of harmonic maps are established. It is shown that if \(f\) is a quasiconformal harmonic diffeomorphism between two Riemann surfaces and homotopic to an asymptotically conformal map modulo boundary, then \(f\) is asymptotically conformal itself.

MSC:

30F60 Teichmüller theory for Riemann surfaces
30F30 Differentials on Riemann surfaces
Full Text: DOI

References:

[1] Douady A. and Earle C.J. (1986). Conformally natural extension of homeomorphisms of the circle. Acta Math. 157: 23–48 · Zbl 0615.30005 · doi:10.1007/BF02392590
[2] Earle C.J., Gardiner F.P. and Lakic N. (1995). Teichmüller spaces with asymptotic conformal equivalence. I.H.E.S. Preprint, Bures-sur-Yvette · Zbl 0958.30033
[3] Earle, C.J., Gardiner, F. P., Lakic, N.: Asmptotic Teichmüller space. Part I: the complex structure. In: The Tradition of Ahlfors and Bers (Stony Brook, NY, 1998). Contemp. Math. vol. 256. Amer. Math. Soc., Providence, RI, pp. 17–38 (2000) · Zbl 0973.30032
[4] Earle, C.J., Marković, V., Sarić, D.: Barycentric extension and the Bers embedding for asymptotic Teichmüller space. Contemp. Math. vol. 311. Amer. Math. Soc. Providence, RI, pp. 87–105 (2002) · Zbl 1020.30047
[5] Gardiner, F.P., Lakic, N.: Quasiconformal Teichmüller Theory. Amer. Math. Soc. Providence, RI (2000) · Zbl 0949.30002
[6] Gardiner F.P. (1987). Teichmüller Theory and Quadratic Differentials. Wiley-Interscience, New York · Zbl 0629.30002
[7] Gardiner F.P. and Sullivan P.D. (1992). Symmetric structures on a closed curve. Amer. J. Math. 114: 683–736 · Zbl 0778.30045 · doi:10.2307/2374795
[8] Gilbarg, D., Trudinger, N. S.: Elliptic partial differential equations of second order, 2nd edn., Springer (1983) · Zbl 0562.35001
[9] Imayoshi Y. and Taniguchi M. (1992). An Introduction to Teichmüller Spaces. Springer, Tokyo · Zbl 0754.30001
[10] Lehto O. (1987). Univalent functions and Teichmüller spaces. Graduate Texts in Mathematics, vol. 109. Springer, Berlin · Zbl 0606.30001
[11] Lehto O. and Virtanen K.I. (1973). Quasiconformal Mappings in the Plane. Springer, Berlin · Zbl 0267.30016
[12] Li P. and Tam L.F. (1993). Uniqueness and regularity of proper harmonic maps. India. Univ. Math. J. 42: 591–635 · Zbl 0790.58011 · doi:10.1512/iumj.1993.42.42027
[13] Marković V. (2002). Harmonic diffeomorphism of noncompact surfaces and Teichmüller spaces. J. London Math. Soc. 65: 103–114 · Zbl 1041.30020 · doi:10.1112/S002461070100268X
[14] Sampson J.H. (1978). Some properties and applications of harmonic mappings. Ann. Sci. École Normale Supérieure, 11: 211–228 · Zbl 0392.31009
[15] Schoen R. (1984). Analytic aspects of the harmonic map problem. In: Chern, S.S. (eds) Seminar on Nonlinear PDE, pp 321–358. Springer, Berlin · Zbl 0551.58011
[16] Schoen, R.: The role of harmonic mappings in rigidity and deformation problems. In: Collection: Complex Geometry (Osaka, 1990). Lecture Notes in Pure and Applied Mathematics, vol. 143. Dekker, New York, pp. 179–200 (1993) · Zbl 0806.58013
[17] Schoen R. and Yau S.T. (1978). On univalent harmonic maps between surfaces. Invent. Math. 44: 265–278 · Zbl 0388.58005 · doi:10.1007/BF01403164
[18] Tam L.F. and Wan T.Y.H. (1995). Quasiconformal harmonic diffeomorphism and the universal Teichmüller sapce. J. Differential Geom. 42: 368–410 · Zbl 0873.32019
[19] Wan, T.Y.H.: Constant mean curvature surface, harmonic maps and universal Teichmüller space. Stanford Thesis (1991)
[20] Wan T.Y.H. (1992). Constant mean curvature surface, harmonic maps and universal Teichmüller space. J. Differential Geom. 35: 643–657 · Zbl 0808.53056
[21] Wolf M. (1989). The Teichmüller theory of harmonic maps. J. Differential Geom. 29: 449–479 · Zbl 0655.58009
[22] Yao G.W. (2004). Convergence of harmonic maps on the Poincaré disk. Proc. Amer. Math. Soc. 132: 2483–2493 · Zbl 1127.30009 · doi:10.1090/S0002-9939-04-07465-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.