×

Harmonicity of Gibbs measures. (English) Zbl 1133.60032

This paper is concerned with the question whether a given probability measure on a geometric boundary (of a group) arises as a measure defining a Poisson boundary, or at least arises as a harmonic measure. It extends earlier work of the authors. Let \(H\) be a \(\text{CAT}(-1)\) space, \(G\) be a group of isometrics acting cocompactly on \(H\) and \(\Phi: SH\to\mathbb{R}\) be a certain Hölder continuous function. Let \(\nu^\Phi\) denote the Gibbs measure for the geodesic flow. By disintegration, \(\nu^\Phi\) gives rise to a family of measures \(\nu^\Phi_p\), \(p\in H\), on the boundary \(\partial H\) of \(H\). The main theorem states that for any \(p\in H\) there exists a measure \(m_p\) on \(G\) such that \(\nu^\Phi_p\) is \(m_p\)-stationary and \((\partial H,\nu^\Phi_p)\) is the Poisson boundary of the random walk \((G,m_p)\).
A slightly more general version in terms of harmonic convolutions is shown as well. The major part of the paper is used to prove the results.

MSC:

60J50 Boundary theory for Markov processes
20F67 Hyperbolic groups and nonpositively curved groups
37A35 Entropy and other invariants, isomorphism, classification in ergodic theory
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)

References:

[1] U. Bader and R. Muchnik, Irreducible \(L^2\)-representations of CAT(\(-\)1) groups, preprint, 2005.
[2] F. F. Bonsall and D. Walsh, Vanishing \(l^ 1\) -sums of the Poisson kernel, and sums with positive coefficients, Proc. Edinburgh Math. Soc. (2) 32 (1989), 431–447. · Zbl 0696.31004 · doi:10.1017/S0013091500004685
[3] M. Bourdon, Structure conforme au bord et flot géodésique d’un \(\mathrm CAT(-1)\)-espace , Enseign. Math. (2) 41 (1995), 63–102. · Zbl 0871.58069
[4] -, Sur le birapport au bord des \(\rmCAT(-1)\)-espaces , Inst. Hautes Études Sci. Publ. Math. 83 (1996), 95–104. · Zbl 0883.53047 · doi:10.1007/BF02698645
[5] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , Lecture Notes in Math. 470 , Springer, Berlin, 1975. · Zbl 0308.28010
[6] C. Connell and R. Muchnik, Harmonicity of quasiconformal measures and Poisson boundaries of hyperbolic spaces , to appear in Geom. Funct. Anal., · Zbl 1166.60323 · doi:10.1007/s00039-007-0608-9
[7] M. Coornaert, Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov , Pacific J. Math. 159 (1993), 241–270. · Zbl 0797.20029 · doi:10.2140/pjm.1993.159.241
[8] M. Coornaert and A. Papadopoulos, Sur une formule de transformation pour les densités conformes au bord des CAT\((-1)\)- espaces , C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 1231–1236. · Zbl 0830.43006
[9] A. Furman, “Random walks on groups and random transformations” in Handbook of Dynamical Systems, Vol. 1A , North-Holland, Amsterdam, 2002, 931–1014. · Zbl 1053.60045
[10] H. Furstenberg, A Poisson formula for semi-simple Lie groups , Ann. of Math. (2) 77 (1963), 335–386. JSTOR: · Zbl 0192.12704 · doi:10.2307/1970220
[11] -, Poisson boundaries and envelopes of discrete groups , Bull. Amer. Math. Soc. 73 (1967), 350–356. · Zbl 0184.33105 · doi:10.1090/S0002-9904-1967-11748-8
[12] -, “Random walks and discrete subgroups of Lie groups” in Advances in Probability and Related Topics, Vol. 1 , Dekker, New York, 1971, 1–63. · Zbl 0221.22008
[13] S. J. Gardiner, Representation of continuous functions as sums of Green functions , Proc. Amer. Math. Soc. 124 (1996), 1149–1157. JSTOR: · Zbl 0847.31002 · doi:10.1090/S0002-9939-96-03176-0
[14] A. Gorodnik, Uniform distribution of orbits of lattices on spaces of frames , Duke Math. J. 122 (2004), 549–589. · Zbl 1067.37004 · doi:10.1215/S0012-7094-04-12234-1
[15] U. HamenstäDt, Harmonic measures for compact negatively curved manifolds , Acta Math. 178 (1997), 39–107. · Zbl 0899.58031 · doi:10.1007/BF02392709
[16] W. K. Hayman and T. J. Lyons, Bases for positive continuous functions , J. London Math. Soc. (2) 42 (1990), 292–308. · Zbl 0675.30040 · doi:10.1112/jlms/s2-42.2.292
[17] V. A. Kaimanovich, “Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds” in Hyperbolic Behaviour of Dynamical Systems (Paris, 1990) , Ann. Inst. H. Poincaré Phys. Théor. 53 (1990), 361–393. · Zbl 0725.58026
[18] -, The Poisson boundary of hyperbolic groups , C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), 59–64. · Zbl 0792.60006
[19] -, The Poisson formula for groups with hyperbolic properties , Ann. of Math. (2) 152 (2000), 659–692. JSTOR: · Zbl 0984.60088 · doi:10.2307/2661351
[20] -, Poisson boundary of discrete groups , unpublished survey, 2003.
[21] -, Differentiability of Gibbs states on negatively curved manifolds , unpublished survey, 2004.
[22] V. A. Kaimanovich and H. Masur, The Poisson boundary of the mapping class group , Invent. Math. 125 (1996), 221–264. · Zbl 0864.57014 · doi:10.1007/s002220050074
[23] -, The Poisson boundary of Teichmüller space , J. Funct. Anal. 156 (1998), 301–332. · Zbl 0953.30029 · doi:10.1006/jfan.1998.3252
[24] V. A. KaĭManovich [Kaimanovich] and A. M. Vershik, Random walks on discrete groups: Boundary and entropy , Ann. Probab. 11 (1983), 457–490. · Zbl 0641.60009 · doi:10.1214/aop/1176993497
[25] S. P. Lalley, Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits , Acta Math. 163 (1989), 1–55. · Zbl 0701.58021 · doi:10.1007/BF02392732
[26] I. Mineyev, Metric conformal structures and hyperbolic dimension , preprint, 2005. · Zbl 1137.37314 · doi:10.1090/S1088-4173-07-00165-8
[27] R. Muchnik, A note on stationarity of spherical measures , Israel J. Math. 152 (2006), 271–283. · Zbl 1130.60082 · doi:10.1007/BF02771987
[28] -, Mixing and irreducibility of \(l^2\) on the boundaries of CAT\((-1)\) spaces , preprint, 2005.
[29] S. J. Patterson, The limit set of a Fuchsian group , Acta Math. 136 (1976), 241–273. · Zbl 0336.30005 · doi:10.1007/BF02392046
[30] D. Ruelle, Thermodynamic Formalism : The Mathematical Structures of Classical Equilibrium Statistical Mechanics , Encyclopedia Math. Appl. 5 , Addison-Wesley, Reading, Mass., 1978. · Zbl 0401.28016
[31] D. Sullivan, The density at infinity of a discrete group of hyperbolic motions , Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202. · Zbl 0439.30034 · doi:10.1007/BF02684773
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.