×

Fractal upper bounds on the density of semiclassical resonances. (English) Zbl 1201.35189

Let \(X\) be a noncompact manifold that is Euclidean outside of a compact set. Let us consider a symmetric semiclassical pseudodifferential operator \(P(h)\rho^w (x,hD)+hp_1^w(x,hD;h)\), where \(p\in S^2(T^* x)\) is elliptic, \(p=0\Rightarrow dp\neq 0\) and \(p_1\in S^{0,2}(T^*x)\) is a usual semiclassical symbol on \(X:| \Omega^\alpha_x\partial^\beta_\xi p_1(x,\xi;h)|\leq C_{\alpha\beta}\langle\xi \rangle^{2-|\beta|}\), \((n,\xi) \in T^*X\), \(h\in(0,1]\). Outside of a compact set, \(P(h)\) is a differential operator of second-order which tends to \(-\Delta-1\) uniformly with respect to \(h\) as \(|x|\to\infty\). The simplest exemple is \(X= \mathbb{R}^n\), \(P(h)=-h^2\Delta+V(x)-1\), \(V\in{\mathcal C}^\infty_c(\mathbb{R}^n;\mathbb{R})\).
The main result of this article is the following. Suppose that the flow of the Hamilton vector field \(H_p\) near zero energy is hyperbolic in some sense. If we write the Minkowski dimension of the trapped set at zero energy as \(m_0=r\nu_0+ 1\), then for any \(\nu>\nu_0\) and \(C_0>0\), there exists \(C_1\) such that the number of resonances of \(P(h)\) in the disc \(D(0,C_0h)\) is bounded by \(C_1h^{-\nu}\). When the trapped set is of pure dimension, \(\nu\) can be replaced by \(\nu_0\). To prove the main result, the authors first develop methods for proving the natural results on teh absence of resonances and on general upper bounds at nondegenerate energies.

MSC:

35S05 Pseudodifferential operators as generalizations of partial differential operators
35P20 Asymptotic distributions of eigenvalues in context of PDEs
35B34 Resonance in context of PDEs
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory

References:

[1] E. Bogomolny, “Spectral statistics” in Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998) , Doc. Math. 1998 , extra vol. III, Univ. Bielefeld, Bielefeld, Germany, 99–108. · Zbl 0963.81022
[2] J.-F. Bony, Résonances dans des domaines de taille \(h\) , Internat. Math. Res. Notices 2001 , no. 16, 817–847. · Zbl 1034.35084 · doi:10.1155/S1073792801000411
[3] J.-M. Bony and J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France 122 (1994), 77–118. · Zbl 0798.35172
[4] J.-F. Bony and J. SjöStrand, Traceformula for resonances in small domains, J. Funct. Anal. 184 (2001), 402–418. · Zbl 1068.47055 · doi:10.1006/jfan.2001.3771
[5] V. Bruneau and V. Petkov, Meromorphic continuation of the spectral shift function, Duke Math. J. 116 (2003), 389–430. · Zbl 1033.35081 · doi:10.1215/S0012-7094-03-11631-2
[6] N. Burq, Semi-classical estimates for the resolvent in nontrapping geometries , Int. Math. Res. Not. 2002 , no. 5, 221–241. · Zbl 1161.81368 · doi:10.1155/S1073792802103059
[7] T. Christiansen, Schrödinger operators with complex-valued potentials and no resonances, Duke Math. J. 133 (2006), 313–323. · Zbl 1107.35094 · doi:10.1215/S0012-7094-06-13324-0
[8] H. Christianson, Growth and zeros of the zeta function for hyperbolic rational maps , to appear in Canada J. Math., · Zbl 1116.37032 · doi:10.4153/CJM-2007-013-4
[9] N. Dencker, J. SjöStrand, and M. Zworski, Pseudospectra of semiclassical (pseudo-) differential operators, Comm. Pure Appl. Math. 57 (2004), 384–415. · Zbl 1054.35035 · doi:10.1002/cpa.20004
[10] M. Dimassi and J. SjöStrand, Spectral Asymptotics in the Semi-Classical Limit , London Math. Soc. Lecture Note Ser. 268 , Cambridge Univ. Press, Cambridge, 1999. · Zbl 0926.35002
[11] C. GéRard and J. SjöStrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys. 108 (1987), 391–421. · Zbl 0637.35027 · doi:10.1007/BF01212317
[12] L. Guillopé, K. Lin, and M. Zworski, The Selberg zeta function for convex co-compact Schottky groups, Comm. Math. Phys. 245 (2004), 149–176. · Zbl 1075.11059 · doi:10.1007/s00220-003-1007-1
[13] B. Helffer and J. SjöStrand, Résonances en limite semi-classique , Mém. Soc. Math. France (N.S.) 1986 , no. 24–25. · Zbl 0631.35075
[14] -, “Équation de Schrödinger avec champ magnétique et équation de Harper” in Schrödinger Operators (Sønderborg, Denmark, 1988) , Lecture Notes in Phys. 345 , Springer, Berlin, 1989, 118–197. · Zbl 0699.35189
[15] L. HöRmander, The Analysis of Linear Partial Differential Operators, Vol. I , Grundlehren Math. Wiss. 256 , Springer, Berlin, 1983.
[16] -, The Analysis of Linear Partial Differential Operators, Vol. III , Grundlehren Math. Wiss. 274 , Springer, Berlin, 1985. · Zbl 0601.35001
[17] V. Ivrii, Microlocal Analysis and Precise Spectral Asymptotics , Springer Monogr. Math., Springer, Berlin, 1998. · Zbl 0906.35003
[18] K. K. Lin, Numerical study of quantum resonances in chaotic scattering , J. Comput. Phys. 176 (2002), 295–329. · Zbl 1021.81021 · doi:10.1006/jcph.2001.6986
[19] K. K. Lin and M. Zworski, Quantum resonances in chaotic scattering , Chem. Phys. Lett. 355 (2002), 201–205.
[20] W. T. Lu, S. Sridhar, and M. Zworski, Fractal Weyl laws for chaotic open systems , Phys. Rev. Lett. 91 (2003), 154101.
[21] A. Martinez, Resonance free domains for non globally analytic potentials, Ann. Henri Poincaré 3 (2002), 739–756. · Zbl 1026.81012 · doi:10.1007/s00023-002-8634-5
[22] R. Melrose, Polynomial bound on the number of scattering poles, J. Funct. Anal. 53 (1983), 287–303. · Zbl 0535.35067 · doi:10.1016/0022-1236(83)90036-8
[23] -, “Polynomial bound on the distribution of poles in scattering by an obstacle” in Journeés “Équations aux Dériveés Partielles” (Saint-Jean-de-Monts, France, 1984) , École Polytech., Palaiseau, France, 1984, no. 3.
[24] T. Morita, Periodic orbits of a dynamical system in a compound central field and a perturbed billiards system , Ergodic Theory Dynam. Systems 14 (1994), 599–619. · Zbl 0810.58014 · doi:10.1017/S0143385700008051
[25] S. Nakamura, P. Stefanov, and M. Zworski, Resonance expansions of propagators in the presence of potential barriers, J. Funct. Anal. 205 (2003), 180–205. · Zbl 1037.35064 · doi:10.1016/S0022-1236(02)00112-X
[26] S. Nonnenmacher and M. Zworski, Distribution of resonances for open quantum maps , Comm. Math. Phys. 269 (2007), 311–365. · Zbl 1114.81043 · doi:10.1007/s00220-006-0131-0
[27] V. Petkov and M. Zworski, Breit-Wigner approximation and the distribution of resonances , Comm. Math. Phys. 204 (1999), 329–351.; Erratum , Comm. Math. Phys. 214 (2000), 733–735. \(\!\!\) Mathematical Reviews (MathSciNet): · Zbl 0936.47004 · doi:10.1007/s002200050648
[28] -, Semi-classical estimates on the scattering determinant, Ann. Henri Poincaré 2 (2001), 675–711. · Zbl 1041.81041 · doi:10.1007/PL00001049
[29] H. Schomerus and J. TworzydłO, Quantum-to-classical crossover of quasi-bound states in open quantum systems, Phys. Rev. Lett. 93 (2004), 154102.
[30] J. SjöStrand, Geometric bounds on the density of resonances for semiclassical problems , Duke Math. J. 60 (1990), 1–57. · Zbl 0702.35188 · doi:10.1215/S0012-7094-90-06001-6
[31] -, “A trace formula and review of some estimates for resonances” in Microlocal Analysis and Spectral Theory (Lucca, Italy, 1996) , NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 490 , Kluwer, Dordrecht, 1997, 377–437.
[32] J. SjöStrand and M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), 729–769. JSTOR: · Zbl 0752.35046 · doi:10.2307/2939287
[33] -, Asymptotic distribution of resonances for convex obstacles, Acta Math. 183 (1999), 191–253. · Zbl 0989.35099 · doi:10.1007/BF02392828
[34] -, Quantum monodromy and semi-classical trace formulae, J. Math. Pures Appl. (9) 81 (2002), 1–33. · Zbl 1038.58033 · doi:10.1016/S0021-7824(01)01230-2
[35] P. Stefanov, Approximating resonances with the complex absorbing potential method , Comm. Partial Differential Equations 30 (2005), 1843–1862. · Zbl 1095.35017 · doi:10.1080/03605300500300022
[36] J. Strain and M. Zworski, Growth of the zeta function for a quadratic map and the dimension of the Julia set, Nonlinearity 17 (2004), 1607–1622. · Zbl 1066.37031 · doi:10.1088/0951-7715/17/5/003
[37] E. C. Titchmarsh, The Theory of Functions , 2nd ed., Oxford Univ. Press, London, 1985. · Zbl 0005.21004
[38] A. Vasy and M. Zworski, Semiclassical estimates in asymptotically Euclidean scattering, Comm. Math. Phys. 212 (2000), 205–217. · Zbl 0955.58023 · doi:10.1007/s002200000207
[39] J. Wunsch and M. Zworski, Distribution of resonances for asymptotically Euclidean manifolds, J. Differential Geom. 55 (2000), 43–82. · Zbl 1030.58024
[40] M. Zworski, Distribution of poles for scattering on the real line, J. Funct. Anal. 73 (1987), 277–296. · Zbl 0662.34033 · doi:10.1016/0022-1236(87)90069-3
[41] -, Sharp polynomial bounds on the distribution of scattering poles, Duke Math. J. 59 (1989), 311–323. · Zbl 0705.35099 · doi:10.1215/S0012-7094-89-05913-9
[42] -, Dimension of the limit set and the density of resonances for convex co-compact Riemann surfaces , Invent. Math. 136 (1999), 353–409. · Zbl 1016.58014 · doi:10.1007/s002220050313
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.