×

Connected Lie groups and property RD. (English) Zbl 1119.22006

Throughout this review \(G\) will always be a locally compact, Hausdorff, separable group. Let \(L^2(G)\) be the space of square integrable functions on \(G\) with respect to a left Haar measure on \(G\), and let \(L\) be a length function on \(G\). We shall say that \(L\) is locally bounded if for any compact set \(U\) in \(G\), \(\sup \{ L(u) : u \in U \} < \infty\). For \(k \geq 0\), define \[ H_L^k (G) = \{ f \in L^2(G) : \int_G (1 + L(x))^{2k} | f(x)| ^2 dx < \infty\}, \] and define \(H_L^{\infty} (G) = \bigcap_{k \geq 0} H_L^k (G)\). The space \(H_L^{\infty} (G)\) is called the space of rapidly decaying functions. For the rest of this review assume all length functions on \(G\) are locally bounded. The group \(G\) is said to have property \(RD\) if and only if the space of rapidly decaying functions is contained in the reduced group \(C^{\ast}\)-algebra of \(G\). In this paper the authors characterize the connected Lie groups that have property \(RD\). Before we state the main result of this paper we need one more definition, which we shall now give. A Lie algebra is of type \(R\) if all the weights of the adjoint representation are purely imaginary. The main result of this paper is the following theorem:
Let \(G\) be a connected Lie group with Lie algebra \(\mathfrak g\) and universal cover \(\widetilde{G}\). The following are equivalent:
(1) \(G\) has property \(RD\);
(2) \(\mathfrak g = \mathfrak s \times \mathfrak q\), where \(\mathfrak s\) is semisimple and \(\mathfrak q\) is an algebra of type \(R\);
(3) \(\widetilde{G} = \widetilde{S} \times \widetilde{Q}\), where the connected Lie groups \(\widetilde{S}\) and \(\widetilde{Q}\) are, respectively, semisimple and of polynomial volume growth.
The authors also give a necessary and sufficient condition for property \(RD\) on unimodular groups of the form \(G = PK\), where \(K\) is a compact subgroup and \(P\) is a closed and amenable subgroup. This condition involves the growth of the elementary spherical function \(\phi_0\). It is also shown that property \(RD\) is stable under central extensions having polynomially distorted center.

MSC:

22E30 Analysis on real and complex Lie groups
46L05 General theory of \(C^*\)-algebras
22D15 Group algebras of locally compact groups
43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.

References:

[1] J.-P. Anker, La forme exacte de l’estimation fondamentale de Harish-Chandra , C. R. Acad. Sci. Paris Ser. I Math. 305 (1987), 371–374. · Zbl 0636.22005
[2] C. Berg and J. P. R. Christensen, Sur la norme des opérateurs de convolution , Invent. Math. 23 (1974), 173–178. · Zbl 0261.22009 · doi:10.1007/BF01405169
[3] N. Bourbaki, Éléments de mathématique, fasc. 29, livre 6: Intégration, chapitre 7: Mesure de Haar; chapitre 8: Convolution et représentations , Actualités Sci. Indust. 1306 , Hermann, Paris, 1963. · Zbl 0156.03204
[4] -, Éléments de mathématique: Espaces vectoriels topologiques , chapitres 1–5, new ed., Masson, Paris, 1981. · Zbl 0482.46001
[5] I. Chatterji, Property (RD) for cocompact lattices in a finite product of rank one Lie groups with some rank two Lie groups , Geom. Dedicata 96 (2003), 161–177. · Zbl 1012.22018 · doi:10.1023/A:1022184513930
[6] I. Chatterji, C. Pittet, and L. Saloff-Coste, Heat decay and property RD , in preparation.
[7] A. Connes and H. Moscovici, Cyclic cohomology, the Novikov conjecture and hyperbolic groups , Topology 29 (1990), 345–388. · Zbl 0759.58047 · doi:10.1016/0040-9383(90)90003-3
[8] M. Cowling, “Herz’s ‘principe de majoration’ and the Kunze-Stein phenomenon” in Harmonic Analysis and Number Theory (Montreal, 1996) , CMS Conf. Proc. 21 , Amer. Math. Soc., Providence, 1997, 73–88. · Zbl 0964.22008
[9] M. Cowling, S. Giulini, A. Hulanicki, and G. Mauceri, Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth , Studia Math. 111 (1994), 103–121. · Zbl 0820.43001
[10] M. Cowling, U. Haagerup, and R. Howe, Almost \(L^ 2\) matrix coefficients , J. Reine Angew. Math. 387 (1988), 97–110. · Zbl 0638.22004
[11] J. Dixmier, Les \(C^ *\)-algèbres et leurs représentations , reprint of the 2nd ed., Grands Class. Gauthier-Villars, Éditions Jacques Gabay, Paris, 1996.
[12] V. V. Gorbatsevich, A. L. Onishchick, and E. B. Vinberg, Foundations of Lie Theory and Lie Transformation Groups , reprint, Springer, Berlin, 1997.
[13] M. Gromov, “Asymptotic invariants of infinite groups” in Geometric Group Theory, Vol. 2 (Sussex, U.K., 1991) , London Math. Soc. Lecture Note Ser. 182 , Cambridge Univ. Press, Cambridge, 1993, 1–295. · Zbl 0841.20039
[14] Y. Guivarc’H, Croissance polynomiale et périodes des fonctions harmoniques , Bull. Soc. Math. France 101 (1973), 333–379. · Zbl 0294.43003
[15] U. Haagerup, An example of a nonnuclear C*-algebra, which has the metric approximation property , Invent. Math. 50 (1978/79), 279–293. · Zbl 0408.46046 · doi:10.1007/BF01410082
[16] S. Helgason, Differential geometry, Lie groups, and symmetric spaces , Pure Appl. Math. 80 , Academic Press, New York, 1978. · Zbl 0451.53038
[17] C. Herz, Sur le phénomène de Kunze-Stein , C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A491–A493. · Zbl 0198.18202
[18] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol I: Structure of Topological Groups, Integration Theory, Group Representations , 2nd ed., Grundlehren Math. Wiss. 115 , Springer, Berlin, 1979. · Zbl 0416.43001
[19] J. W. Jenkins, Growth of connected locally compact groups , J. Functional Analysis 12 (1973), 113–127. · Zbl 0247.43001 · doi:10.1016/0022-1236(73)90092-X
[20] R. Ji and L. B. Schweitzer, Spectral invariance of smooth crossed products, and rapid decay locally compact groups , \(K\)-Theory 10 (1996), 283–305. · Zbl 0854.46052 · doi:10.1007/BF00538186
[21] P. Jolissaint, Rapidly decreasing functions in reduced C*-algebras of groups , Trans. Amer. Math. Soc. 317 (1990), 167–196. JSTOR: · Zbl 0711.46054 · doi:10.2307/2001458
[22] E. T. Kehlet, Cross sections for quotient maps of locally compact groups , Math. Scand. 55 (1984), 152–160. · Zbl 0565.22004
[23] A. W. Knapp, Representation Theory of Semisimple Groups: An Overview Based on Examples , reprint of the 1986 original, Princeton Landmarks Math. 36 , Princeton Univ. Press, Princeton, 1986. · Zbl 0604.22001
[24] V. Lafforgue, A proof of property (RD) for cocompact lattices of \(\mathrm SL(3,\mathbf R)\) and \(\mathrm SL(3,\mathbf C)\), J. Lie Theory 10 (2000), 255–267. · Zbl 0981.46046
[25] -, K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes , Invent. Math. 149 (2002), 1–95. · Zbl 1084.19003 · doi:10.1007/s002220200213
[26] H. Leptin, On locally compact groups with invariant means , Proc. Amer. Math. Soc. 19 (1968), 489–494. JSTOR: · Zbl 0155.05702 · doi:10.2307/2035559
[27] G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups , Ergeb. Math. Grenzgeb. (3) 17 , Springer, Berlin, 1991. · Zbl 0732.22008
[28] D. Montgomery and L. Zippin, Topological Transformation Groups , Interscience, New York, 1955. · Zbl 0068.01904
[29] S. Mustapha, “Multiplicateurs spectraux sur certains groupes non-unimodulaires” in Harmonic Analysis and Number Theory (Montreal, 1996) , CMS Conf. Proc. 21 , Amer. Math. Soc., Providence, 1997, 11–30. · Zbl 0911.22003
[30] C. Pittet, The isoperimetric profile of homogeneous Riemannian manifolds , J. Differential Geom. 54 (2000), 255–302. · Zbl 1035.53069
[31] J. Ramagge, G. Robertson, and T. Steger, A Haagerup inequality for \(\tildeA_1\times\tildeA_1\) and \(\tildeA_2\) buildings , Geom. Funct. Anal. 8 (1998), 702–731. · Zbl 0906.43009 · doi:10.1007/s000390050071
[32] W. Rudin, Functional Analysis , 2nd ed., Internat. Ser. Pure Appl. Math., McGraw-Hill, New York, 1991. · Zbl 0867.46001
[33] L. Saloff-Coste and W. Woess, Transition operators on co-compact \(G\)-spaces , to appear in Rev. Mat. Iberoamericana, preprint, 2005. · Zbl 1116.22007
[34] A. J. Silberger, Introduction to Harmonic Analysis on Reductive \(p\)-Adic Groups , Math. Notes 23 , Princeton Univ. Press, Princeton, 1979. · Zbl 0458.22006
[35] A. Valette, Introduction to the Baum-Connes Conjecture , Lectures Math. ETH Zürich, Birkhäuser, Basel, 2002. · Zbl 1136.58013
[36] V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations , reprint of the 1974 ed., Grad. Texts Math. 102 , Springer, New York, 1984. · Zbl 0955.22500
[37] N. T. Varopoulos, Analysis on Lie groups , Rev. Mat. Iberoamericana 12 (1996), 791–917. · Zbl 0881.22009 · doi:10.4171/RMI/215
[38] -, “Distance distortion on Lie groups” in Random Walks and Discrete Potential Theory (Cortona, Italy, 1997) , Sympos. Math. 39 , Cambridge Univ. Press, Cambridge, 1999, 320–357.
[39] N. T. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and Geometry on Groups , Cambridge Tracts in Math. 100 , Cambridge Univ. Press, Cambridge, 1993. · Zbl 1179.22009
[40] A. Weil, L’intégration dans les groupes topologiques et ses applications , Actual. Sci. Ind. 869 , Hermann, Paris, 1940. · Zbl 0063.08195
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.