×

Ball lightning as a self-organizing process of a plasma-plasma interface and El Naschie’s \(\varepsilon^{ (\infty )}\) space-time. (English) Zbl 1132.83308

Summary: In the fractal space-time theories, some properties of a ball lightning (BL) are established: the oscillation regimes, the hysteresis, the distributions of the potential, field and charge etc. In such a context, the Feynman-El Naschie hypothesis on the universality of the dipole-dipole interaction is confirmed and a connection between El Naschie’s \(\varepsilon^{(\infty )}\) space-time and Feigenbaum-Goldfain conjecture is given.

MSC:

83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
Full Text: DOI

References:

[1] Kadomtsev, B. B., On the ball lightning phenomenology, Comm Plasma Phys Controlled Fusion, 13, 277-285 (1990)
[2] Turner, J., The structure and stability of ball lightning, Philos Trans R Soc London Sr A, 247, 83-111 (1994)
[3] Lowke, J. J., A theory of ball lightning as an electric discharge, J Phys D Appl Phys, 29, 1237-1244 (1996)
[4] Jennison, R. C., Can ball lightning exist in vacuum?, Nature, 254, 95 (1973)
[5] Zheng, X. H., Quantitative analysis for ball lightning, Phys Lett A, 148, 463-469 (1990)
[6] Ohtsuki, Y. H.; Ofuruton, H., Plasma fireballs formed by microwave interface in air, Nature, 350, 32 (1991)
[7] Yasui, K., Plasma fireballs fed by microwaves, Phys Lett A, 173, 451-455 (1993)
[8] Handel, P. H.; Leitner, J. F., Development of the maser-caviton ball lightning theory, J Geophys Res, 99, 10.689-10.691 (1994)
[9] Ranada, A. F.; Trueba, J. L., Ball lightning: an electromagnetic knot?, Nature, 383, 32 (1996)
[10] Roth, J. R., Ball lightning: What nature is trying to tell the plasma research community, Fusion Technol, 27, 255-270 (1995)
[11] Koloc PM. Method and apparatus for generating and utilizing a compound plasma configuration, Patent, 4.023.065, US Patent and Trademark Off., Washington, DC, May 10 1977.; Koloc PM. Method and apparatus for generating and utilizing a compound plasma configuration, Patent, 4.023.065, US Patent and Trademark Off., Washington, DC, May 10 1977.
[12] Sanduloviciu, M.; Lozneanu, E., Ball lightning as a self-organization phenomenon, J Geophys Res, 105, 4719-4727 (2000)
[13] Nottale, L., Fractal space-time and microphysics: towards a theory of scale relativity (1993), World Scientific: World Scientific Singapore · Zbl 0789.58003
[14] Agop M, Rusu I. El Naschie’s self-organization of the patterns in a plasma discharge: experimental and theoretical results, Chaos, Solitons & Fractals, in press, doi:10.1016/j.chaos.2006.04.017.; Agop M, Rusu I. El Naschie’s self-organization of the patterns in a plasma discharge: experimental and theoretical results, Chaos, Solitons & Fractals, in press, doi:10.1016/j.chaos.2006.04.017. · Zbl 1132.83310
[15] Jackson, E. A., Perspectives in nonlinear dynamics, vols. I and II (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0769.58019
[16] Talasman, S. J.; Ignat, M., Negative resistance and self-organization in plasmas, Phys Lett A, 301, 83 (2002)
[17] Lozneanu, E.; Sanduloviciu, M.; Popescu, V., Negative differential resistance related to self-organization phenomena in a dc gas discharge, J Appl Phys, 92, 1195 (2002)
[18] Sanduloviciu, M.; Melning, V.; Borcia, C., Spontaneously generated temporal patterns correlated with dynamics of self-organized coherent space charge configurations formed in plasma, Phys Lett A, 229, 354 (1997)
[19] Sanduloviciu, M.; Lozneanu, E.; Popescu, V., On the physical basis of pattern formation in nonlinear systems, Chaos, Solitons & Fractals, 17, 183 (2003)
[20] Bowman, F., Introduction to elliptic function with applications (1955), English University Press: English University Press London
[21] El Naschie, M. S., A note on quantum gravity and Cantorian space-time, Chaos, Solitons & Fractals, 8, 1, 131 (1997) · Zbl 0945.83004
[22] Chaichian, M.; Nelipa, N. F., Introduction to gange field theories (1984), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York, Tokyo
[23] Feigenbaum, M. J., Presentation functions, fixed points and a theory of scaling function dynamics, J Statis Phys, 52, 527 (1988) · Zbl 1084.37507
[24] Goldfain, E., Derivation of lepton masses from the chaotic regime of the linear \(σ\)-model, Chaos, Solitons & Fractals, 14, 1331-1340 (2004)
[25] El Naschie, M. S., Feigenbaum scenario for turbulence and Cantorian \(E\)-infinity theory of high energy particle physics, Chaos, Solitons & Fractals, 32, 3, 911-915 (2007)
[26] El Naschie, M. S., On the universality class of all universality classes and \(E\)-infinity space-time physics, Chaos, Solitons & Fractals, 32, 3, 927-936 (2007)
[27] El Naschie, M. S., From experimental quantum optics to quantum gravity via a fuzzy Kähler manifold, Chaos, Solitons & Fractals, 25, 969-977 (2005) · Zbl 1070.81118
[28] El Naschie, M. S., Hilbert, Fock and Cantorian spaces in the quantum two-slit gedanken experiment, Chaos, Solitons & Fractals., 27, 39-42 (2006) · Zbl 1082.81502
[29] El Naschie, M. S., Hilbert space, the number of Higgs particles and the quantum two-slit experiment, Chaos, Solitons & Fractals, 27, 9-13 (2006) · Zbl 1082.81501
[30] El Naschie, M. S., Non-Euclidian space-time structure and the two-slit experiment, Chaos, Solitons & Fractals, 26, 1-6 (2005) · Zbl 1122.81338
[31] El Naschie, M. S., A new solution for the two-slit experiment, Chaos, Solitons & Fractals, 25, 935-939 (2005) · Zbl 1071.81502
[32] El Naschie, M. S., On a fuzzy Kähler-like manifold which is consistent with the two-slit experiment, Int J Nonl Sci Num Simul, 6, 2, 95-98 (2005)
[33] El Naschie, M. S., The idealized quantum two-slit gedanken experiment revised - Criticism and reinterpretation, Chaos, Solitons & Fractals, 27, 843-849 (2005) · Zbl 1089.81500
[34] El Nachie, M. S., A review of the \(\operatorname{\&z.epsiv;}^{(\infty)}\) theory and the mass spectrum of high energy particle physics, Chaos, Solitons & Fractals, 19, 209-236 (2004) · Zbl 1071.81501
[35] El Naschie, M. S., On the possibility of two new ‘elementary’ particles with mass equal to \(m(k) = 1.8033\) MeV and \(m(\overline{\alpha}_g) = 26.180339\) MeV, Chaos, Solitons and Fractal, 20, 649-652 (2004) · Zbl 1054.81555
[36] El Naschie, M. S., On the topological ground state of \(E\)-infinity spacetime and the super string connection, Chaos, Solitons & Fractals, 32, 2, 468-470 (2007)
[37] El Naschie, M. S., From symmetry to particle, Chaos, Solitons & Fractals, 32, 2, 427-430 (2007)
[38] El Naschie, M. S., SU(5) grand unification in a transfinite form, Chaos, Solitons & Fractals, 32, 2, 370-374 (2007)
[39] El Naschie, M. S., Determining the number of Fermions and the number of Boson separately in an extended standard model, Chaos, Solitons & Fractals, 32, 3, 1241-1243 (2007)
[40] El Naschie, M. S., Rigorous derivation of the inverse electromagnetic fine structure constant \(\overline{\alpha} = 1 / 137.036\) using super string theory and the holographic boundary of \(E\)-infinity, Chaos, Solitons & Fractals, 32, 3, 893-895 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.