×

On the Cauchy problem of fourth-order nonlinear Schrödinger equations. (English) Zbl 1115.35121

The paper deals with the Cauchy problem for the fourth-order semilinear Schrödinger equation \[ \begin{cases} i\partial_tu+a\Delta u +b\Delta^2u=\pm u^p,& (x,t)\in \mathbb R^{n+1},\\ u(0,x)=u_0(x),& x\in \mathbb R^{n}, \end{cases} \] where \(p\geq 1\) is a positive integer, \(1\leq n\leq 4,\) \(a\) and \(b\) are real constants with \(b\neq0\) and the initial data \(u_0(x)\) belong to a suitable Besov space. It is proved that for any \(q\in [{{4(p^2-1)}\over{(4-n)p+4+n}},\infty],\) the above Cauchy problem is locally well-posed in \(\dot B^{s_p}_{2,q}\) and \(\dot B^s_{2,q}\) where \(s_p=n/2-4/(p-1)\) and \(s>s_p;\) and almost globally well-posed in these spaces for any \(q\in[1,\infty]\) and small initial data. Global well-posedness is obtained when \(a=0\) for small initial data.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35R25 Ill-posed problems for PDEs
35B35 Stability in context of PDEs
Full Text: DOI

References:

[1] Ben-Artzi, M.; Koch, H.; Saut, J.-C., Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris, Series I, 330, 87-92 (1999) · Zbl 0942.35160
[2] Bergh, J.; Löfström, J., Interpolation Spaces. An Introduction, (Grundlehern Math. Wiss. No. 223 (1976), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0344.46071
[3] Cui, S., Pointwise estimates for a class of oscillatory integrals and related \(L^p - L^q\) estimates, J. Fourier Anal. Appl., 11, 441-457 (2005) · Zbl 1089.42011
[4] S. Cui, Pointwise estimates for oscillatory integrals and \(L^p - L^q\); S. Cui, Pointwise estimates for oscillatory integrals and \(L^p - L^q\)
[5] S. Cui, C. Guo, Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces \(H^s ( R^n )\); S. Cui, C. Guo, Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces \(H^s ( R^n )\)
[6] Fibich, G.; Ilan, B.; Papanicolaou, G., Self-focusing with fourth-order diserpersion, SIAM J. Appl. Math., 62, 1437-1462 (2002) · Zbl 1003.35112
[7] Ivano, B. A.; Kosevich, A. M., Stable three-dimenyional small-amplitude soliton in magnetic materials, Sov. J. Low Temp. Phys., 9, 439-442 (1983)
[8] Karpman, V. I., Stabilization of soliton instability by higher-order dispersion: Fourth-order nonlinear Schrödinger type equations, Phys. Rev., 53, 1336-1339 (1996)
[9] Karpman, V. I.; Shagalov, A. G., Stability of solitons described by nonlinear Schrodinger type equation with higher-order dispersion, Physica D, 144, 194-210 (2000) · Zbl 0962.35165
[10] Kenig, C. E.; Ponce, G.; Vega, L., On the ill-posedness of some canonical dispersive equations, Duke Math. J., 106, 3, 617-633 (2001) · Zbl 1034.35145
[11] Molinet, L.; Ribaud, F., On the Cauchy problem for the generalized Korteweg-de Vries equation, Comm. Partial Differential Equations, 28, 2065-2091 (2003) · Zbl 1059.35124
[12] Molinet, L.; Ribaud, F., Well-posedness results for the generalized Benjamin-Ono equation with small initial data, J. Math. Pure Appl., 83, 277-311 (2004) · Zbl 1084.35094
[13] O’Neil, R., Convolution operators and \(L(p, q)\) spaces, Duke Math. J., 30, 129-142 (1963) · Zbl 0178.47701
[14] Planchon, F., Self-similar solutions and semi-linear wave equations in Besov spaces, J. Math. Pure Appl., 79, 809-820 (2000) · Zbl 0979.35106
[15] Planchon, F., On the Cauchy problem in Besov spaces for a non-linear Schrödinger equation, Commun. Contemp. Math., 2, 243-254 (2000) · Zbl 0961.35148
[16] Planchon, F., Dispersive estimates and the 2D cubic Schrödinger equation, J. Anal. Math., 86, 319-334 (2002) · Zbl 1034.35130
[17] Turitsyn, S. K., Three-dimentional dispersion of nonlinearyity and stability of multidimentional solitons, Teoret. Mat. Fiz., 64, 226-232 (1985), (in Russian)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.