×

Spatially extended host-parasite interactions: the role of recovery and immunity. (English) Zbl 1118.92066

Summary: Techniques for determining the long-term dynamics of host-parasite systems are well established for mixed populations. The field of spatial modelling in ecology is more recent but a number of key advances have been made. We use state-of-the-art approximation techniques, supported by simulations, in order to investigate the role of recovery and immunity in spatially structured populations. Our approach is to use correlation models, namely pair-wise models, to capture the spatial relationships of contacts and interactions between individuals. We use the pair-wise framework to address a number of key ecological questions; including, the persistence of endemic limit cycles and regions of parasite-driven extinction – features which differentiate spatial from non-spatial models – and the effects on invasion fitness. We demonstrate a loss of limit cycle behaviour, in addition to an increase in the critical transmissibility and extinction thresholds, when recovery is included. This approach allows for a better analytical understanding of the dynamics of host-parasite interactions and demonstrates the importance of recovery and immunity in local interactions.

MSC:

92D40 Ecology
34C60 Qualitative investigation and simulation of ordinary differential equation models
65C05 Monte Carlo methods
65C20 Probabilistic models, generic numerical methods in probability and statistics

Software:

AUTO
Full Text: DOI

References:

[1] Anderson, R. M., Populations and infectious-diseases: ecology or epidemiology—the 8th Tansley Lecture, J. Anim. Ecol., 60, 1-50 (1991)
[2] Anderson, R. M.; May, R. M., The population dynamics of micro-parasites and their invertebrate hosts, Phil. Trans. R. Soc. London B, 291, 451-524 (1981)
[3] Boots, M.; Sasaki, A., ‘Small worlds’ and the evolution of virulence: infection occurs locally and at a distance, Proc. Biol. Sci., 266, 1933-1938 (1999)
[4] Boots, M.; Sasaki, A., The evolutionary dynamics of local infection and global reproduction in host-parasite interactions, Ecol. Lett., 3, 181-185 (2000)
[5] Boots, M.; Sasaki, A., Parasite-driven extinction in spatially explicit host-parasite systems, Am. Nat., 34, 707-713 (2001)
[6] Boots, M.; Sasaki, A., Extinction in host-parasite interactions, Am. Nat., 159, 706-713 (2002)
[7] Daszak, P.; Cunningham, A. A.; Hyatt, A. D., Emerging infectious diseases of wildlife-threats to biodiversity and human health, Science, 287, 443-449 (2000)
[8] de Wit, A.; Lima, D.; Dewel, G.; Borckmans, P., Spatiotemporal dynamics near a codimension-two point, Phys. Rev. E, 54, 261-271 (1996)
[9] (Dieckmann, U.; Law, R.; Metz, J., The geometry of ecological interactions: simplifying spatial complexity (2000), University Press: University Press Cambridge) · Zbl 1170.92339
[10] Doedel, E.J., Champneys, A.R., Fairgrieve, T.R., Kuznetsov, Y.A., Sandstede, B., Wang, X.J., 1997. AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations.; Doedel, E.J., Champneys, A.R., Fairgrieve, T.R., Kuznetsov, Y.A., Sandstede, B., Wang, X.J., 1997. AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations.
[11] Dwyer, G., On the spatial spread of insect pathogens—theory and experiment, Ecology, 73, 479-494 (1992)
[12] Ellner, S. P., Pair approximation for lattice models with multiple interaction scales, J. Theor. Biol., 210, 435-447 (2001)
[13] Grenfell, B. T.; Bolker, B. M.; Kleczkowski, A., Seasonality and extinction in chaotic metapopulations, Proc. R. Soc. London B, 259, 97-103 (1995)
[14] Harada, Y.; Ezoe, H.; Iwasa, Y.; Matsuda, H.; Sato, K., Population persistence and spatially limited social interaction, Theor. Pop. Biol., 48, 65-91 (1995) · Zbl 0842.92028
[15] Haraguchi, Y.; Sasaki, A., The evolution of parasite virulence and transmision rate in spatially structured population, J. Theor. Biol., 203, 85-96 (2000)
[16] Hassell, M. P.; May, R. M.; Pacala, S. W.; Chesson, P. L., Spatial structure and chaos in insect population dynamics, Nature, 353, 255-258 (1991)
[17] Hendry, R. J.; McGlade, J.; Weiner, J., A coupled map lattice model of the growth of plant monocultures, Ecol. Model., 84, 81-90 (1996)
[18] Hudson, P. J.; Dobson, A. P.; Newborn, D., Prevention of population cycles by parasite removal, Science, 286, 2425 (1998)
[19] Katori, M.; Konno, N., Correlation inequalities and lower bounds for the critical value \(λ_c\) of contact processes, J. Phys. Soc. Japan, 59, 877-887 (1990)
[20] Katori, M.; Konno, N., Upper bounds for survival probability of the contact process, J. Stat. Phys., 63, 115-130 (1991)
[21] Keeling, M. J., Dynamics and Evolution of Spatial Host-Parasite Systems (1995), Ph.D. Thesis, University of Warwick
[22] Keeling, M. J.; Rand, D. A., Spatial correlations and local fluctuations in host-parasite ecologies, (Glendinning, P., From Finite to Infinite Dimensional Systems (1996), Kluwer: Kluwer Amsterdam) · Zbl 1005.92032
[23] Keeling, M. J.; Rand, D. A.; Morris, A. J., Correlation modles for childhood epidemics, Proc. R. Soc. London B, 264, 1149-1156 (1997)
[24] Keeling, M. J.; Woolhouse, M. E.; May, R. M.; Davies, G.; Grenfell, B. T., Modelling vaccination strategies against foot-and-mouth disease, Nature, 421, 136-142 (2003)
[25] Keeling, M. J.; Woolhouse, M. E.; Shaw, D. J.; Matthews, L.; Chase-Topping, M.; Haydon, D. T.; Cornell, S. J.; Kappey, J.; Wilesmith, J.; Grenfell, B. T., Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape, Science, 294, 813-817 (2001)
[26] Levin, S. A.; Steele, J. H.; Powell, T. M., Patch Dynamics (1993), Springer: Springer New York · Zbl 0802.92026
[27] Matsuda, H.; Ogita, A.; Sasaki, A.; Sato, K., Statistical mechanics of population: the lattice Lotka-Volterra model, Prog. Theor. Phys., 88, 1035-1049 (1992)
[28] Matthews, L.; Haydon, D. T.; Shaw, D. J.; Chase-Topping, M. E.; Keeling, M. J.; Woolhouse, M. E., Neighbourhood control policies and the spread of infectious diseases, Proc. Biol. Sci., 270, 1659-1666 (2003)
[29] (McGlade, J., Advanced Ecological Theory (1999), Blackwell Science: Blackwell Science Oxford)
[30] Mimura, M.; Murray, J. D., On a diffusive prey-predator model which exhibits patchiness, J. Theor. Biol., 75, 249-262 (1978)
[31] Morris, A. J., Representing Spatial Interactions in Simple Ecological Models (1997), Ph.D. Thesis, University of Warwick
[32] Rand, D. A., Correlation equations and pair approximations for spatial ecologies, (McGlade, J., Advanced Ecological Theory: Principles and Applications (1999), Blackwell Science: Blackwell Science Oxford), 100-142 · Zbl 1001.92552
[33] Rand, D. A.; Keeling, M. J.; Wilson, H. B., Invasion, stability and evolution to criticality in spatially extended, artificial host-pathogen ecologies, Proc. R. Soc. London B, 259, 55-63 (1995)
[34] Rhodes, C. J.; Anderson, R. M., Persistence and dynamics in lattice models of epidemic spread, J. Theor. Biol., 180, 125-133 (1996)
[35] Sato, K.; Iwasa, Y., Pair approximations for lattice-based ecological models, (Dieckmann, U.; Law, R.; Metz, J., The Geometry of Ecological Interactions: Simplifying Spatial Complexity (2000), Cambridge University Press: Cambridge University Press Cambridge)
[36] Sato, K.; Konno, N., Succesional dynamical models on the 2-dimenional lattice space, J. Phys. Soc. Japan, 64, 1866-1869 (1995) · Zbl 0972.82550
[37] Sato, K.; Matsuda, H.; Sasaki, A., Pathogen invasion and host extinction in lattice structured populations, J. Math. Biol., 32, 3, 251-268 (1994) · Zbl 0790.92022
[38] Schinazi, R., On an interacting particle system modeling an epidemic, J. Math. Biol., 34, 915-925 (1996) · Zbl 0869.92017
[39] Tilman, D.; Kareiva, P., Spatial Ecology (1997), Princeton University Press: Princeton University Press New Jersey
[40] Tompkins, D. M.; Begon, M., Parasites can regulate wildlife populations, Parasitol. Today, 15, 311-318 (1999)
[41] Turing, A., The chemical basis of morphogenesis, Phil. Trans. R. Soc. London B, 237, 37-72 (1952) · Zbl 1403.92034
[42] van Baalen, M., Pair approximations for different spatial geometries, (Dieckmann, U.; Law, R.; Metz, J., The Geometry of Ecological Interactions: Simplifying Spatial Complexity (2000), Cambridge University Press: Cambridge University Press Cambridge)
[43] White, K. A.J.; Murray, J. D.; Lewis, M. A., A model for wolf pack territory formation and maintenance, J. Theor. Biol., 178, 29-43 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.