×

A Pieri-type formula for the \({K}\)-theory of a flag manifold. (English) Zbl 1111.14047

For a flag variety \(\text{Fl}_n\), the classes of structure sheaves of Schubert varieties form an integral basis in the Grothendieck ring. A major open problem in the modern Schubert calculus is to determine the \(K\)-theory Schubert structure constants, which express the product of two Schubert classes in terms of this basis.
The authors derive explicit Pieri-type formulae in the Grothendieck ring of a flag variety, which generalize both the \(K\)-theory Monk formula [see C. Lenart, J. Pure Appl. Algebra 179, No. 1–2, 137–158 (2003; Zbl 1063.14060)] and the cohomology Pieri formula [see F. Sottile, Ann. Inst. Fourier 46, No. 1, 89–110 (1996; Zbl 0837.14041)]. These expand the product of an arbitrary Schubert class and a special Schubert class in the basis of Schubert classes. These special classes are indexed by cycles of the form \((k-p+1, k-p+2,\dots,k+1)\) or \((k+p, k+p-1, \dots ,k)\), and are pulled back from the projection of \(\text{Fl}_n\) to the Grassmannian of \(k\)-planes.
The formula is expressed in terms of certain labelled chains in the \(k\)-Bruhat order of the symmetric group, and the multiplicities in it are certain binomial coefficients. The proof exploits algebraic-combinatorial setting of Grothendieck polynomials and a Monk-like formula for multiplying a Grothendieck polynomial by a variable.

MSC:

14M15 Grassmannians, Schubert varieties, flag manifolds
05E99 Algebraic combinatorics
19L64 Geometric applications of topological \(K\)-theory

References:

[1] Nantel Bergeron and Frank Sottile, Schubert polynomials, the Bruhat order, and the geometry of flag manifolds, Duke Math. J. 95 (1998), no. 2, 373 – 423. · Zbl 0939.05084 · doi:10.1215/S0012-7094-98-09511-4
[2] Nantel Bergeron and Frank Sottile, A monoid for the Grassmannian Bruhat order, European J. Combin. 20 (1999), no. 3, 197 – 211. · Zbl 0926.05034 · doi:10.1006/eujc.1999.0283
[3] Michel Brion, Positivity in the Grothendieck group of complex flag varieties, J. Algebra 258 (2002), no. 1, 137 – 159. Special issue in celebration of Claudio Procesi’s 60th birthday. · Zbl 1052.14054 · doi:10.1016/S0021-8693(02)00505-7
[4] Anders Skovsted Buch, A Littlewood-Richardson rule for the \?-theory of Grassmannians, Acta Math. 189 (2002), no. 1, 37 – 78. · Zbl 1090.14015 · doi:10.1007/BF02392644
[5] C. Chevalley, Sur les décompositions cellulaires des espaces \?/\?, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 1 – 23 (French). With a foreword by Armand Borel. · Zbl 0824.14042
[6] William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. · Zbl 0878.14034
[7] William Fulton and Alain Lascoux, A Pieri formula in the Grothendieck ring of a flag bundle, Duke Math. J. 76 (1994), no. 3, 711 – 729. · Zbl 0840.14007 · doi:10.1215/S0012-7094-94-07627-8
[8] Stephen Griffeth and Arun Ram, Affine Hecke algebras and the Schubert calculus, European J. Combin. 25 (2004), no. 8, 1263 – 1283. · Zbl 1076.14068 · doi:10.1016/j.ejc.2003.10.012
[9] S. L. Kleiman and Dan Laksov, Schubert calculus, Amer. Math. Monthly 79 (1972), 1061 – 1082. · Zbl 0272.14016 · doi:10.2307/2317421
[10] Alain Lascoux, Anneau de Grothendieck de la variété de drapeaux, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 1 – 34 (French). · Zbl 0742.14041 · doi:10.1007/978-0-8176-4576-2_1
[11] A. Lascoux, Transition on Grothendieck polynomials, Physics and combinatorics, 2000 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, pp. 164 – 179. · Zbl 1052.14059 · doi:10.1142/9789812810007_0007
[12] Alain Lascoux and Marcel-Paul Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 13, 447 – 450 (French, with English summary). · Zbl 0495.14031 · doi:10.1090/conm/088/1000001
[13] Alain Lascoux and Marcel-Paul Schützenberger, Symmetry and flag manifolds, Invariant theory (Montecatini, 1982) Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 118 – 144. · Zbl 0542.14031 · doi:10.1007/BFb0063238
[14] Cristian Lenart, Combinatorial aspects of the \?-theory of Grassmannians, Ann. Comb. 4 (2000), no. 1, 67 – 82. · Zbl 0958.05128 · doi:10.1007/PL00001276
[15] Cristian Lenart, A \?-theory version of Monk’s formula and some related multiplication formulas, J. Pure Appl. Algebra 179 (2003), no. 1-2, 137 – 158. · Zbl 1063.14060 · doi:10.1016/S0022-4049(02)00208-6
[16] C. Lenart and A. Postnikov, Affine Weyl groups in K-theory and representation theory. math.RT/0309207 · Zbl 1137.14037
[17] Cristian Lenart, Shawn Robinson, and Frank Sottile, Grothendieck polynomials via permutation patterns and chains in the Bruhat order, Amer. J. Math. 128 (2006), no. 4, 805 – 848. · Zbl 1149.14039
[18] I.G. Macdonald, Notes on Schubert polynomials, Laboratoire de combinatoire et d’informatique mathématique (LACIM), Univ. du Québec à Montréal, Montréal, 1991. · Zbl 0784.05061
[19] Laurent Manivel, Fonctions symétriques, polynômes de Schubert et lieux de dégénérescence, Cours Spécialisés [Specialized Courses], vol. 3, Société Mathématique de France, Paris, 1998 (French, with English and French summaries). · Zbl 0911.14023
[20] D. Monk, The geometry of flag manifolds, Proc. London Math. Soc. (3) 9 (1959), 253 – 286. · Zbl 0096.36201 · doi:10.1112/plms/s3-9.2.253
[21] Harsh Pittie and Arun Ram, A Pieri-Chevalley formula in the \?-theory of a \?/\?-bundle, Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 102 – 107. · Zbl 0947.14025
[22] Alexander Postnikov, On a quantum version of Pieri’s formula, Advances in geometry, Progr. Math., vol. 172, Birkhäuser Boston, Boston, MA, 1999, pp. 371 – 383. · Zbl 0944.14019
[23] Frank Sottile, Pieri’s formula for flag manifolds and Schubert polynomials, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 89 – 110 (English, with English and French summaries). · Zbl 0837.14041
[24] Daya-Nand Verma, Möbius inversion for the Bruhat ordering on a Weyl group, Ann. Sci. École Norm. Sup. (4) 4 (1971), 393 – 398. · Zbl 0236.20035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.