×

Mean-driven and fluctuation-driven persistent activity in recurrent networks. (English) Zbl 1116.92018

Summary: Spike trains from cortical neurons show a high degree of irregularity, with coefficients of variation (CV) of their interspike interval (ISI) distribution close to or higher than one. It has been suggested that this irregularity might be a reflection of a particular dynamical state of the local cortical circuit in which excitation and inhibition balance each other. In this ‘balanced’ state, the mean current to the neurons is below the threshold, and firing is driven by current fluctuations, resulting in irregular Poisson-like spike trains. Recent data show that the degree of irregularity in neuronal spike trains recorded during the delay period of working memory experiments is the same for both low-activity states of a few Hz and for elevated, persistent activity states of a few tens of Hz. Since the difference between these persistent activity states cannot be due to external factors coming from sensory inputs, this suggests that the underlying network dynamics might support coexisting balanced states at different firing rates.
We use mean field techniques to study the possible existence of multiple balanced steady states in recurrent networks of current-based leaky integrate-and-fire (LIF) neurons. To assess the degree of balance of a steady state, we extend existing mean-field theories so that not only the firing rate, but also the coefficient of variation of the interspike interval distribution of the neurons, are determined self-consistently. Depending on the connectivity parameters of the network, we find bistable solutions of different types. If the local recurrent connectivity is mainly excitatory, the two stable steady states differ mainly in the mean current to the neurons. In this case, the mean drive in the elevated persistent activity state is suprathreshold and typically characterized by low spiking irregularity. If the local recurrent excitatory and inhibitory drives are both large and nearly balanced, or even dominated by inhibition, two stable states coexist, both with subthreshold current drive. In this case, the spiking variability in both the resting state and the mnemonic persistent state is large, but the balance condition implies parameter fine-tuning. Since the degree of required fine-tuning increases with network size and, on the other hand, the size of the fluctuations in the afferent current to the cells increases for small networks, overall we find that fluctuation-driven persistent activity in the very simplified type of models we analyze is not a robust phenomenon. Possible implications of considering more realistic models are discussed.

MSC:

92C20 Neural biology
94C99 Circuits, networks
Full Text: DOI

References:

[1] DOI: 10.1126/science.275.5297.221 · doi:10.1126/science.275.5297.221
[2] DOI: 10.1088/0954-898X/8/4/003 · Zbl 0904.92013 · doi:10.1088/0954-898X/8/4/003
[3] DOI: 10.1093/cercor/7.3.237 · doi:10.1093/cercor/7.3.237
[4] DOI: 10.1088/0954-898X/2/3/004 · Zbl 0900.92046 · doi:10.1088/0954-898X/2/3/004
[5] Anderson J. S., J. Neurophysiol. 84 pp 909– (2000)
[6] Bair W., J. Neurosci 21 pp 1676– (2001)
[7] DOI: 10.1073/pnas.92.9.3844 · doi:10.1073/pnas.92.9.3844
[8] DOI: 10.1073/pnas.88.24.11569 · doi:10.1073/pnas.88.24.11569
[9] DOI: 10.1023/A:1008925309027 · Zbl 1036.92008 · doi:10.1023/A:1008925309027
[10] DOI: 10.1088/0954-898X/11/4/302 · Zbl 1037.92008 · doi:10.1088/0954-898X/11/4/302
[11] DOI: 10.1162/089976699300016179 · doi:10.1162/089976699300016179
[12] DOI: 10.1023/A:1011204814320 · doi:10.1023/A:1011204814320
[13] DOI: 10.1152/jn.01095.2002 · doi:10.1152/jn.01095.2002
[14] DOI: 10.1073/pnas.0401906101 · doi:10.1073/pnas.0401906101
[15] DOI: 10.1371/journal.pbio.0020264 · doi:10.1371/journal.pbio.0020264
[16] Chafee M. V., J. Neurophysiol. 79 pp 2919– (1998)
[17] DOI: 10.1093/cercor/10.9.910 · doi:10.1093/cercor/10.9.910
[18] DOI: 10.1152/jn.00949.2002 · doi:10.1152/jn.00949.2002
[19] DOI: 10.1038/9165 · doi:10.1038/9165
[20] DOI: 10.1038/nrn1198 · doi:10.1038/nrn1198
[21] DOI: 10.1146/annurev.neuro.27.070203.144152 · doi:10.1146/annurev.neuro.27.070203.144152
[22] Funahashi S., J. Neurophysiol. 61 pp 331– (1989)
[23] DOI: 10.1126/science.173.3997.652 · doi:10.1126/science.173.3997.652
[24] DOI: 10.1016/S0006-3495(64)86768-0 · doi:10.1016/S0006-3495(64)86768-0
[25] Gnadt J. W., Exp. Brain Res. 70 pp 216– (1988)
[26] DOI: 10.1103/PhysRevLett.86.4175 · doi:10.1103/PhysRevLett.86.4175
[27] Harsch A., J. Neurosci. 20 pp 6181– (2000)
[28] DOI: 10.1073/pnas.79.8.2554 · Zbl 1369.92007 · doi:10.1073/pnas.79.8.2554
[29] DOI: 10.1093/cercor/bhh065 · doi:10.1093/cercor/bhh065
[30] DOI: 10.1038/nn1391 · doi:10.1038/nn1391
[31] DOI: 10.1088/0954-898X/10/4/305 · Zbl 0956.82019 · doi:10.1088/0954-898X/10/4/305
[32] DOI: 10.1162/089976600300014953 · doi:10.1162/089976600300014953
[33] Miller E. K., J. Neurosci. 16 pp 5154– (1996)
[34] DOI: 10.1038/331068a0 · doi:10.1038/331068a0
[35] DOI: 10.1103/PhysRevLett.89.288101 · doi:10.1103/PhysRevLett.89.288101
[36] DOI: 10.1103/PhysRevLett.94.088103 · doi:10.1103/PhysRevLett.94.088103
[37] DOI: 10.1103/PhysRevLett.96.028101 · doi:10.1103/PhysRevLett.96.028101
[38] Rao S. G., J. Neurophysiol. 81 pp 1903– (1999)
[39] DOI: 10.1016/S0896-6273(03)00255-1 · doi:10.1016/S0896-6273(03)00255-1
[40] DOI: 10.1038/20939 · doi:10.1038/20939
[41] Salinas E., Journal of Neuroscience 20 pp 6193– (2000)
[42] DOI: 10.1038/35086012 · doi:10.1038/35086012
[43] DOI: 10.1016/0959-4388(94)90059-0 · doi:10.1016/0959-4388(94)90059-0
[44] Shadlen M. N., J. Neurosci. 18 pp 3870– (1998)
[45] DOI: 10.1162/089976699300016511 · doi:10.1162/089976699300016511
[46] DOI: 10.1038/nature01616 · doi:10.1038/nature01616
[47] DOI: 10.1016/0306-4522(94)90154-6 · doi:10.1016/0306-4522(94)90154-6
[48] Softky W. R., J. Neurosci. 13 pp 334– (1993)
[49] DOI: 10.1073/pnas.94.2.719 · doi:10.1073/pnas.94.2.719
[50] DOI: 10.1088/0954-898X/6/2/001 · Zbl 0825.92050 · doi:10.1088/0954-898X/6/2/001
[51] DOI: 10.1038/36103 · doi:10.1038/36103
[52] DOI: 10.1126/science.274.5293.1724 · doi:10.1126/science.274.5293.1724
[53] DOI: 10.1162/089976698300017214 · doi:10.1162/089976698300017214
[54] Wang X.-J., J. Neurosci. 19 pp 9587– (1999)
[55] DOI: 10.1038/659 · doi:10.1038/659
[56] DOI: 10.1038/370140a0 · doi:10.1038/370140a0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.