×

Invariant global motion recognition in the dorsal visual system: a unifying theory. (English) Zbl 1116.92019

Summary: The motion of an object (such as a wheel rotating) is seen as consistent independent of its position and size on the retina. Neurons in higher cortical visual areas respond to these global motion stimuli invariantly, but neurons in early cortical areas with small receptive fields cannot represent this motion, not only because of the aperture problem but also because they do not have invariant representations. In a unifying hypothesis with the design of the ventral cortical visual system, we propose that the dorsal visual system uses a hierarchical feedforward network architecture (V1, V2, MT, MSTd, parietal cortex) with training of the connections with a short-term memory trace associative synaptic modification rule to capture what is invariant at each stage.
Simulations show that the proposal is computationally feasible, in that invariant representations of the motion flow fields produced by objects self-organize in the later layers of the architecture. The model produces invariant representations of the motion flow fields produced by global in-plane motion of an object, in-plane rotational motion, looming versus receding of the object, and object-based rotation about a principal axis. Thus, the dorsal and ventral visual systems may share some similar computational principles.

MSC:

92C20 Neural biology
91E30 Psychophysics and psychophysiology; perception
Full Text: DOI

References:

[1] DOI: 10.1098/rstb.1997.0128 · doi:10.1098/rstb.1997.0128
[2] DOI: 10.1093/cercor/bhi013 · doi:10.1093/cercor/bhi013
[3] DOI: 10.1523/JNEUROSCI.0554-04.2004 · doi:10.1523/JNEUROSCI.0554-04.2004
[4] DOI: 10.1088/0954-898X/9/3/008 · Zbl 0904.92041 · doi:10.1088/0954-898X/9/3/008
[5] DOI: 10.1007/s00221-004-1876-3 · doi:10.1007/s00221-004-1876-3
[6] DOI: 10.1152/jn.01095.2004 · doi:10.1152/jn.01095.2004
[7] DOI: 10.1162/jocn.1991.3.1.1 · doi:10.1162/jocn.1991.3.1.1
[8] DOI: 10.1007/s004220100284 · Zbl 1104.91312 · doi:10.1007/s004220100284
[9] DOI: 10.1162/neco.1991.3.2.194 · doi:10.1162/neco.1991.3.2.194
[10] DOI: 10.1007/BF00344251 · Zbl 0419.92009 · doi:10.1007/BF00344251
[11] Geesaman B. J., Journal of Neuroscience 16 pp 4716– (1996)
[12] DOI: 10.1038/nrn1057 · doi:10.1038/nrn1057
[13] Graziano M. S. A., Journal of Neuroscience 14 pp 54– (1994)
[14] DOI: 10.1007/BF00247948 · doi:10.1007/BF00247948
[15] DOI: 10.1016/0004-3702(81)90024-2 · doi:10.1016/0004-3702(81)90024-2
[16] Lagae L., Journal of Neurophysiology 71 pp 1597– (1994)
[17] DOI: 10.1146/annurev.ne.19.030196.003045 · doi:10.1146/annurev.ne.19.030196.003045
[18] DOI: 10.1038/341052a0 · doi:10.1038/341052a0
[19] DOI: 10.1038/14819 · doi:10.1038/14819
[20] DOI: 10.1098/rstb.1992.0002 · doi:10.1098/rstb.1992.0002
[21] DOI: 10.1016/S0896-6273(00)00030-1 · doi:10.1016/S0896-6273(00)00030-1
[22] DOI: 10.1162/089976600300014845 · doi:10.1162/089976600300014845
[23] DOI: 10.1088/0954-898X/12/2/302 · Zbl 0967.92005 · doi:10.1088/0954-898X/12/2/302
[24] DOI: 10.1098/rspb.1994.0087 · doi:10.1098/rspb.1994.0087
[25] DOI: 10.1007/BF00227340 · doi:10.1007/BF00227340
[26] DOI: 10.1007/PL00005615 · doi:10.1007/PL00005615
[27] DOI: 10.1023/A:1008899916425 · Zbl 0894.92012 · doi:10.1023/A:1008899916425
[28] DOI: 10.1007/BF00237594 · doi:10.1007/BF00237594
[29] DOI: 10.1016/0006-8993(78)90584-X · doi:10.1016/0006-8993(78)90584-X
[30] DOI: 10.1007/s00422-005-0030-z · Zbl 1172.92341 · doi:10.1007/s00422-005-0030-z
[31] DOI: 10.1016/S0893-6080(00)00017-4 · doi:10.1016/S0893-6080(00)00017-4
[32] DOI: 10.1162/089976602760407982 · Zbl 1057.68676 · doi:10.1162/089976602760407982
[33] DOI: 10.1146/annurev.ne.19.030196.000545 · doi:10.1146/annurev.ne.19.030196.000545
[34] DOI: 10.1073/pnas.071028598 · doi:10.1073/pnas.071028598
[35] DOI: 10.1016/S0301-0082(96)00054-8 · doi:10.1016/S0301-0082(96)00054-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.