×

Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. (English) Zbl 1118.93304

Summary: We have described elsewhere an adaptive filter model of cerebellar learning in which the cerebellar microcircuit acts to decorrelate motor commands from their sensory consequences [Dean, Porrill, and Stone, Proceedings of the Royal Society of London, Series B 269 (1503), 1895–1904 (2002)]. Learning stability required the cerebellar microcircuit to be embedded in a recurrent loop, and this has been shown to lead to a simple and modular adaptive control architecture when applied to the linearized 3D vestibular ocular reflex [Porrill, Dean, and Stone, Progress in Brain Research 144, 61–75 (2004)]. Here we investigate the properties of recurrent loop connectivity in the case of redundant and nonlinear motor systems and illustrate them using the example of kinematic control of a simulated two-joint robot arm. We demonstrate that (1) the learning rule does not require unavailable motor error signals or complex neural reference structures to estimate such signals (i.e., it solves the motor error problem) and (2) control of redundant systems is not subject to the nonconvexity problem in which incorrect average motor commands are learned for end-effector positions that can be accessed in more than one arm configuration. These properties suggest a central functional role for the closed cerebellar loops, which have been shown to be ubiquitous in motor systems (e.g., Kelly and Strick, Journal of Neuroscience 23 (23), 8432–8444 (2003).

MSC:

93A30 Mathematical modelling of systems (MSC2010)
93C40 Adaptive control/observation systems
93C85 Automated systems (robots, etc.) in control theory
68T40 Artificial intelligence for robotics
68T05 Learning and adaptive systems in artificial intelligence
93E35 Stochastic learning and adaptive control
Full Text: DOI

References:

[1] DOI: 10.1016/0025-5564(71)90051-4 · doi:10.1016/0025-5564(71)90051-4
[2] DOI: 10.1007/BF00250590 · doi:10.1007/BF00250590
[3] DOI: 10.1038/nrn1646 · doi:10.1038/nrn1646
[4] DOI: 10.1146/annurev.neuro.27.070203.144238 · doi:10.1146/annurev.neuro.27.070203.144238
[5] Brindley G. S., International Brain Research Organization Bulletin 3 pp 80– (1964)
[6] DOI: 10.1016/S0166-2236(98)01310-1 · doi:10.1016/S0166-2236(98)01310-1
[7] DOI: 10.1007/BF00196450 · doi:10.1007/BF00196450
[8] DOI: 10.1098/rspb.2002.2103 · doi:10.1098/rspb.2002.2103
[9] DOI: 10.1016/S0079-6123(03)14404-4 · doi:10.1016/S0079-6123(03)14404-4
[10] DOI: 10.1007/BF00336192 · Zbl 0523.92006 · doi:10.1007/BF00336192
[11] Galiana H. L., Journal of Neurophysiology 51 (2) pp 210– (1984)
[12] DOI: 10.1111/j.1749-6632.2002.tb07569.x · doi:10.1111/j.1749-6632.2002.tb07569.x
[13] DOI: 10.1196/annals.1303.018 · doi:10.1196/annals.1303.018
[14] DOI: 10.1007/BF00201432 · doi:10.1007/BF00201432
[15] DOI: 10.1016/S0893-6080(05)80053-X · doi:10.1016/S0893-6080(05)80053-X
[16] DOI: 10.1080/14734220510007987 · doi:10.1080/14734220510007987
[17] Ito M., International Journal of Neurology (Montevideo) 7 pp 162– (1970)
[18] DOI: 10.1016/S0074-7742(08)60366-9 · doi:10.1016/S0074-7742(08)60366-9
[19] Keifer J., Physiological Reviews 74 (3) pp 509– (1994)
[20] Kelly R. M., Journal of Neuroscience 23 (23) pp 8432– (2003)
[21] Kobayashi Y., Journal of Neurophysiology 80 (2) pp 832– (1998)
[22] DOI: 10.1016/S0092-8674(00)81397-5 · doi:10.1016/S0092-8674(00)81397-5
[23] DOI: 10.1113/jphysiol.1969.sp008820 · doi:10.1113/jphysiol.1969.sp008820
[24] Mayhew J. E. W., Series B 337 pp 315– (1992)
[25] Miles F. A., Journal of Neurophysiology 43 pp 1437– (1980)
[26] DOI: 10.1016/S0167-6911(01)00191-8 · Zbl 0994.93024 · doi:10.1016/S0167-6911(01)00191-8
[27] DOI: 10.1016/j.neunet.2004.05.003 · Zbl 1089.93011 · doi:10.1016/j.neunet.2004.05.003
[28] DOI: 10.1016/0168-0102(92)90023-6 · doi:10.1016/0168-0102(92)90023-6
[29] DOI: 10.1109/3477.826961 · doi:10.1109/3477.826961
[30] DOI: 10.1109/72.410363 · doi:10.1109/72.410363
[31] DOI: 10.1098/rspb.2003.2658 · doi:10.1098/rspb.2003.2658
[32] DOI: 10.1016/0006-8993(74)90961-5 · doi:10.1016/0006-8993(74)90961-5
[33] DOI: 10.1007/BF00275079 · doi:10.1007/BF00275079
[34] DOI: 10.1111/j.1749-6632.2002.tb07570.x · doi:10.1111/j.1749-6632.2002.tb07570.x
[35] DOI: 10.1017/S0140525X00081486 · doi:10.1017/S0140525X00081486
[36] DOI: 10.1016/0005-1098(89)90094-0 · Zbl 0696.93045 · doi:10.1016/0005-1098(89)90094-0
[37] Yamamoto K., Journal of Neurophysiology 87 (3) pp 1554– (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.