×

Non-classical negation in the works of Helena Rasiowa and their impact on the theory of negation. (English) Zbl 1114.03027

Summary: The paper is devoted to the contributions of Helena Rasiowa to the theory of nonclassical negation. The main results of Rasiowa in this area concern: constructive logic with strong (Nelson) negation, and intuitionistic negation and some of its generalizations: minimal negation of Johansson and semi-negation.
We also discuss the impact of Rasiowa’s works on the theory of nonclassical negation.

MSC:

03B60 Other nonclassical logic
03-03 History of mathematical logic and foundations
01A60 History of mathematics in the 20th century
Full Text: DOI

References:

[1] Akama, S., ’On the proof method for constructive falsity’, Z. Math. Logik Grundlagen Math., 34 (1988), 385–392. · Zbl 0662.03049 · doi:10.1002/malq.19880340502
[2] Akama, S., ’Constructive predicate logic with strong negation and model theory’, Notre Dame J. Form. Logic, 29 (1989), 18–27. · Zbl 0647.03005 · doi:10.1305/ndjfl/1093637767
[3] Akama, S., ’Subformula semantics for strong negation systems’, J. Phil. Logic, 19 (1990), 217–226. · Zbl 0693.03004 · doi:10.1007/BF00263542
[4] Akama, S., ’Tableaux for logic programming with strong negation’, in D.Galmiche (ed.), TABLEAUX’97: Automated Reasoning with Analitic Tableaux and Related Methods, Springer, Berlin, 1997, pp. 31–42.
[5] Akama, S., ’On Constructive Modality’, in S. Akama (ed.), Logic, Language and Computation, Kluwer Academic Publishers, Dordrecht, 1997, pp. 143–158. · Zbl 0902.03006
[6] Almukdad, A., and D. Nelson, ’Constructible Falsity and Inexact Predicates’, J. Symbolic Logic, 49 (1984), 231-233. · Zbl 0575.03016 · doi:10.2307/2274105
[7] Arieli, O., and A. Avron, ’Reasoning with logical bilattices’, Journal of Logic Language and Information, 5 (1996), 25–63. · Zbl 0851.03017 · doi:10.1007/BF00215626
[8] Arieli, O., and A. Avron, ’The Value of the Four Values’, newblock Artificial Intelligence, 102 (1998), 97–141. · Zbl 0928.03025 · doi:10.1016/S0004-3702(98)00032-0
[9] Avron, A., ’Natural 3-valued Logics’, Journalof Symbolic Logic, 56 (1991), 276–294. · Zbl 0745.03017 · doi:10.2307/2274919
[10] Avron, A., ’Negation: two points of view’, in D. Gabbay and H. Wansing (eds.), What is Negation? Applied Logic Series, vol. 13 (1999), 3–22. · Zbl 0972.03011
[11] Avron, A., ’On Negation, Completeness and Consistency’, in D. Gabbay and F. Guenther (eds.), Handbook of Philosophical Logic, vol. 9, Kluwer Academic Publishers, 2002, pp. 287–319.
[12] Avron, A., ’Tableaux with four Signs as a Unified Framework’, in M.C. Mayer and F. Piri (eds.), Proceedings of TABLEAUX-2003, LNAI No 2796, Springer, 2003, pp. 4–16. · Zbl 1274.03018
[13] Avron, A., ’Combining Classical Logic, Paraconsistency and Ralevance’, Journal of Applied Logic, 3 (2005), 133–160. · Zbl 1067.03030 · doi:10.1016/j.jal.2004.07.015
[14] Avron, A., ’Non-deterministic Matrices and Modular semantics of Rules’, in J.Y. Beziau (ed.), Logica Universalis, Birkhüser Verlag, 2005, pp. 149–167. · Zbl 1081.03011
[15] Avron, A., ’Non-deterministic Semantics for Paraconsistent C-systems’, in L. Godo (ed.), Proceedings of 8-th ECQARU, LNAI No 3571, Springer, 2005, pp. 625–637. · Zbl 1113.03323
[16] Avron, A., ’A non-deterministic view of non-classical negations’, Studia Logica 80, No 2–3 (2005), 159–194. · Zbl 1086.03023 · doi:10.1007/s11225-005-8468-5
[17] Avron, A., and B. Konikowska, ’Multi-valued Calculi for Logics Based on Non-determinism’, Logical Journal of the IJPL, 13 (2005), 365–387. · Zbl 1080.03007 · doi:10.1093/jigpal/jzi030
[18] Belnap, N.D., ’How Computers Should Think’. in G. Ryle (ed.) Contemporary Aspects of Philosophy, Oriel Press, Stockfield, England, 1977, pp. 30–56.
[19] Belnap, N.D., ’A useful four-valued logic’. in G. Epstein and M. Dunn (eds.), Modern Use of Multiple-Valued Logic, Reidel, Dordrecht, 1977, pp. 7–37. · Zbl 0424.03012
[20] Bialinicki-Birula, A., and H. Rasiova, ’On the representation of quasi-Boolean algebras’, Bull. Ac. Pol. Sci., 5 (1957), 259–261. · Zbl 0082.01403
[21] Bialinicki-Birula, A., and H. Rasiova, ’On constructible falsity in constructive logic with strong negation’, Colloquium Mathematicum, 6 (1958), 287–310. · Zbl 0087.01001
[22] Brignole, D., and A.Monteiro, ’Caracterisation des algèbres des Nelson par des egalitès’, I, II. Proc. Japan. Ac., 43 (1967), 279–283, 284–285. · Zbl 0158.00803 · doi:10.3792/pja/1195521624
[23] Carnieli, W.A., and J.Markos, ’A taxonomy of C-systems’. in W. A. Carnieli, M.E. Coniglio, and I.L.M. D’Otaviano (eds.), Paraconsistency – the logical way to be inconsistent, Lecture notes in pure and applied Mathematics, Marcell Dekker, 2002, pp. 1–94.
[24] Cignoli, R., ’The class of Kleene algebras satisfying interpolation preperty and Nelson algebras’. Algebra Universalis, 23 (1986), 262–292. · Zbl 0621.06009 · doi:10.1007/BF01230621
[25] Cignioli, R., and M.S. de Gallego, ’Dualities for some De Morgan algebras with operators and Lukasiewicz algebras’. J. Austral. Math. Soc., (Ser. A), 83 (1983), 377–393. · Zbl 0523.06019 · doi:10.1017/S1446788700023806
[26] Cleave, J.P., ’The notion of validity in logical systems with inexact predicates’. British J. Philos. Sci., 21 (1970), 269–274. · Zbl 0242.02033 · doi:10.1093/bjps/21.3.269
[27] Cleave, J.P., ’The notion of logical consequence in the logic of inexact predicates’. Z. Mtah. Logik Grundlagen Math., 20 (1974), 307–324. · Zbl 0299.02015 · doi:10.1002/malq.19740201903
[28] sc Cleave, J.P., ’Logic and inexactness. Stephan Körner – Philosophical analysis and reconstruction’. Contributions to Philosophy, Nijhooff Int. Philos. Ser. 28 (1987), 137–167.
[29] Curry, H.B., ’A theory of formal deducibility’, Notre Dame Mathematical Lectures, 6, Notre Dame, 1950. · Zbl 0041.34807
[30] Curry, H.B., ’On the definition of negation by a fixed proposition in the inferential calculus’, J. Symb. Logic, 17 (1952), 98–104. · Zbl 0047.25101 · doi:10.2307/2266240
[31] H. B. Curry, ’The system LD’, J. Symb. Logic, 17 (1952), 35–42. · Zbl 0048.00203 · doi:10.2307/2267456
[32] Došen, K., ’Negative modal operators in intuitionistic logic’, Publications de L’Institu Mathematique (N.S) 35(49) (1984), 3–14. · Zbl 0555.03011
[33] Došen, K., ’Negation as a modal operator’, Reports on Mathematical Logic, 20 (1986), 15–27. · Zbl 0626.03006
[34] Došen, K., ’Negation and Impossibility’, in J. Perzanowski (ed.), Essays on Philisophy and Logic, Jagielonian University Press, Cracow, 1987, 85–91. · Zbl 0651.03003
[35] Došen, K., ’Negation in the light of modal logic’, in D.Gabbay and H. Wansing (eds.), What is Negation?, Kluwer, Dordrecht, 1999, 77–86. · Zbl 0974.03019
[36] Dunn, J.M., ’Partiality and its Dual’, Studia Logica 66, No. 1(1980), 5–40. · Zbl 0988.03012 · doi:10.1023/A:1026740726955
[37] Dunn, J.M., ’Gaggle Theory: An Abstraction of Galois Connections and Residuation with Applications to Negations and Various Logical Operations’, LNCS, No 478, 1990, 31–51. · Zbl 0814.03044
[38] Dunn, J.M., ’Generalized ortho negation’, in H. Wansing (ed.), Negation, A notion in Focus, Walter de Gruyer. Berlin. New York, 1996, pp. 3–26. · Zbl 0979.03027
[39] Dunn, J.M., ’A comparative study of various model-theoretic treatments of negation: a history of formal negation’, in D. Gabbay and H. Wansing (eds.), What is Negation?, Applied Logic Series 13, Kluwer Academic Publishers, Dordrecht, 1999, pp. 23–51. · Zbl 0972.03028
[40] Dunn, J.M., and Chunlai Zhou, ’Negation in the Context of Gagle Theory’, Studia Logica, 80, vol. 2–3 (2005), 235–264. · Zbl 1097.03015 · doi:10.1007/s11225-005-8470-y
[41] Fidel, M.M., ’An algebraic study of a propositional system of Nelson’, in Mathematical Logic, Proc. of the First Brasilian Conference, Campinas 1977, Lecture Notes in pure Appl. Math., 39 (1978), 99–117.
[42] Fidel, M.M, ’An algebraic study of logic with constructive negation’, Proc. of the Third Brazilian Conf. on Math. Logic, Recife 1979, 1980, pp. 119–29.
[43] Fitting, M., ’Bilattices in logic programming’, in G. Epstein (ed.), Proc. of the 20th Int. Symp. on Multyple-Valued Logic, IEEE Press, 1990, pp. 238–246.
[44] Fitting, M., ’Bilattices and the semantics of logic programming’, Journal of logic programming, 11 (2) (1991), 91–116. · Zbl 0757.68028 · doi:10.1016/0743-1066(91)90014-G
[45] Gabbay, D., and H. Wansing, ’Negation in Structured Consequence Relations’, in A. Fuhrmann and H. Rott (eds.), Logic, Action and Information, de Gruyter, Berlin, 1995, pp. 328–350. · Zbl 0926.03033
[46] Gargov, G., ’Knowledge, uncertainty and ignorance in logic: bilattices and beyond’, Journal of Applied Non-Classical Logics, 9 (1999), 195–283. · Zbl 0993.03079
[47] Gelfond, M., and V. Lifschitz, ’Classical negation in logic programs and disjunctive databases’, New Generation Computing, 9 (1991), 365–385. · Zbl 0735.68012 · doi:10.1007/BF03037169
[48] Ginsberg, M. L., ’Multiple-valued logics: a uniform approach to reasoning in AI’, Computer Intelligence, 4 (1988), 256–316.
[49] Goldblatt, R.I, ’Decidability of some extensions of J’, Z. für Math. Logic und Gründ. Math., 20 (1974), 203–206. · Zbl 0306.02045
[50] Goranko, V.F, ’Propositional logics with strong negation and the Craig interpolation theorem’, C. R. Acad. Bulg. Sci., 38 (1985), 825–827. · Zbl 0585.03012
[51] Goranko, V., ’The Craig Interpolation Theorem for Propositional Logics with StrongNegation’, Studia Logica, 44 (1985), 291–317. · Zbl 0586.03019 · doi:10.1007/BF00394448
[52] Goré, R., ’Dual intuitionistic logic revisited’, LNAI No 1847, Springer Verlag, Berlin, 2000, pp. 252–267. · Zbl 0963.03042
[53] Gurevich, Y, ’Intuitionistic logic with strong negation’, Studia Logica, 36, (1–2) (1977), 49–59. · Zbl 0366.02015 · doi:10.1007/BF02121114
[54] Hasuo, I., and R. Kashima, ’Kripke completeness of first-order constructive logics with strong negation’, Logic Journal of the IGPL, 11(6) (2003), 615–646. · Zbl 1048.03022 · doi:10.1093/jigpal/11.6.615
[55] Herre, H., and D. Pearce, ’Disjunctive logic programming, constructivity and strong negation’, in D. Pearce et al. (eds.), Logics in AI. European workshop JELIA’92. Berlin, Germany, September 7–10, 1992. LNCS 663, Springer, Berlin, 1992, pp. 391–410. · Zbl 0925.68098
[56] Jaspers, J., Calculi for Constructive Communication. ILLC Dissertation Series 1994-4, ILLC 1994.
[57] Johansson, I., ’Der Minimalkalkül, ein reduzierter intuitionistisher Formalismus’, Compositio Math., 4 (1936). · JFM 62.1045.08
[58] Kamide, N., ’Sequent Calculi for Intuitionistic Linear Logic with strong Negation’, Logic Journal of the IGPL, 10 (2002), 653–678. · Zbl 1014.03057 · doi:10.1093/jigpal/10.6.653
[59] Kamide, N., ’A Canonical Model Construction for Substructural Logics with strong negation’. Reports on Mathematical Logic, 36 (2002), 95–116. · Zbl 1027.03019
[60] Kamide, N., ’A note on dual intuitionistic logic’, Mathematical Logic Quarterly, 49 (2003), 519–524. · Zbl 1036.03006 · doi:10.1002/malq.200310055
[61] Kamide, N., ’Quantized linear logic, involving quantales and strong negation’, Studia Logica, 77 (2004), 355–384. · Zbl 1068.03052 · doi:10.1023/B:STUD.0000039030.03885.7c
[62] Kamide, N., ’A relationship between Rauszer’s H-B Logic and Nelson’s Constructive Logic’, Bulletin of the Section of Logic, 33(4) (2004), 237–249. · Zbl 1066.03041
[63] Kamide, N., ’Gentzen -Type Methods for Bilattice Negation’, Studia Logica, 80, No 2–3 (2005), 265–289. · Zbl 1086.03025 · doi:10.1007/s11225-005-8471-x
[64] Klunder, B, ’Topos based semantics for constructive logics with strong negation’, Z. Math. Logik Grundlagen Math. 38, No.5–6 (1992), 509–519. · Zbl 0798.03063 · doi:10.1002/malq.19920380146
[65] Kracht, M., ’On extensions of intermediate logics by strong negation’, Journal of Philosophical Logic, 27 (1998), 49–73. · Zbl 0929.03035 · doi:10.1023/A:1004222213212
[66] Lopez-Escobar, E.G.K, ’Refutability and Elementary Number Theory’, Indag. Math. 34 (1972), 362–374. · Zbl 0262.02027
[67] Maximova, L., Interpolation and Definability in Extensions of the Minimal Logic. Algebra and Logic, vol. 44, No 6, November 2005, 407–421. · Zbl 1106.03023 · doi:10.1007/s10469-005-0038-4
[68] Markov, A.A., ’Constructive Logic’(in Russian), Uspekhi Matematicheskih Nauk 5 (1950), 187–188.
[69] Monteiro, A., ’Les Algébres de Nelson semi-simple’, Notas de Logica Matematica, Inst. de Mat. Universidad Nacional del Sur, Bahia Blanca.
[70] Monteiro, A., ’Construction des algébres de Nelson finies’, Bull.Ac.Pol. Sc. Cl. III, 11 (1963), 359–362. · Zbl 0123.24602
[71] Nelson, D., ’Constructible falsity’, Journal of Symbolic Logic, 14 (1949), 16–26. · Zbl 0033.24304 · doi:10.2307/2268973
[72] Nelson, D., ’Negation and separation of Concepts in Constructive Systems’, in A. Heyting (ed.), Constructivityin Mathematics, North-Holland, Amsterdam, 1959, pp. 208–225. · Zbl 0085.25004
[73] Odintsov, S. P., ’Maximal paraconsistent extension of Johansson logic’, Logique et Analyse, 161–162–163(1998), 107–120. · Zbl 1008.03017
[74] Odintsov, S. P., ’Representation of j-algebras and Segerberg’s logics’, Logique et analyse, 165/166 (1999), 81–106. · Zbl 1029.03011
[75] Odintsov, S. C., ’Logic of classical refutability and class of extensions of minimal logic’, Logic and Logical Philosophy, 9 (2001), 91–107. · Zbl 1034.03027
[76] Odintsov, S. P., ’Algebraic semantics for paraconsistent Nelson’s Logic’, Journal of Logic and Computation, 13(4) (2003), 453–468. · Zbl 1034.03029 · doi:10.1093/logcom/13.4.453
[77] Odintsov, S. C., ’Reductio ad absurdum and Lukasiewicz modalities’, Logic and Logical Philosophy, 11/12 (2003), 149–166. · Zbl 1117.03326
[78] Odintsov, S. P., ’On the Representation of N4-Lattices’, Studia Logica, vol. 76, 3 (2004), 385–405. · Zbl 1047.03050 · doi:10.1023/B:STUD.0000032104.14199.08
[79] Odintsov, S. P., ’The class of extensions of Nelson’s paraconsistent logic’, Studia Logica, 80, No 2–3 (2005), 291–320. · Zbl 1097.03019 · doi:10.1007/s11225-005-8472-9
[80] Odintsov, S. P., and D. Pearce, ’Routley Semantics for Answer Sets’, Proceedings LPNMR05, Springer LNAI, forthcoming 2005. · Zbl 1152.68416
[81] Odintsov, S. P., and H. Wansing, Inconsistency-tolerant Description Logic: Motivation and Basic Systems, in V.F. Hendricks and J. Malinowski (eds.), Trends in Logic: 50 Years of Studia Logica, Kluwer Academic Publishers, Dordrecht, 2003, pp. 301–335. · Zbl 1048.03021
[82] Odintsov, S. P., and H. Wansing, ’Constructive Predicate Logic and Constructive Modal logic. Formal Duality versus Semantical Duality’, in V.F. Hendricks et al. (eds.), First-Order Logic Revisited, Logos Verlag, Berlin, 2004, pp. 263–280. · Zbl 1096.03018
[83] Pagliani P., ’Rough sets and Nelson algebras’, Fundamenta Informaticae, 23. (2–3) (1996), 205–219. · Zbl 0858.68110
[84] Patterson A., ’A symmetric model theory for constructible falsity’, Bulletin of the asasociation of Symbolic Logic, 1996.
[85] Patterson A., Implicite Programming and the Logic of Constructible Duality, Ph.D. thesis, B.S.Washington University, 1997.
[86] Pearce, D., ’Answer Sets and Constructive Logic. Part II: extended logic programs and related nonmonotonic formalisms’, in L. M. Periera and A. Nerode (eds.), Logic Programming and Non-monotonic Reasoning. MIT press, 1993, pp. 457–475.
[87] Pearce, D, ’A new logical characterization of stable models and answer sets’, in Proc. of NMELP 96, LNCS 1216, Springer, 1997, pp. 57–70.
[88] Pearce, D, ’From here to there: Stable negation in logic programming’, in Dov Gabbay and Heinrich Wansing (eds.), What is Negation?. Kluwer Academic Pub., 1999, pp. 161–181. · Zbl 0978.03027
[89] Pearce, D., and A. Valverde, ’A First Order Non-monotonic Extension of Constructive Logic’, Studia Logica, 80 (2005), 321–346. · Zbl 1097.03020 · doi:10.1007/s11225-005-8473-8
[90] Pearce, D., and G. Wagner, ’Reasoning with negative information, I: Strong negation in logic programs’, in Language, Knowledge and Intensionality (Acta Filosophica Fenica), Helsinki, 49 (1990), 405–439. . · Zbl 0746.03020
[91] Pearce, D., and G. Wagner, ’Logic programming with strong negation’, in P. Schroeder-Heister (ed.). Extensions of Logic Programming, Lecture Notes in Artificial Intelligence, No 475, Springer-Verlag, Berlin, 1991, pp. 311–326.
[92] Porte, J, ’Lukasiewicz’s L-modal system and classical refutability’, Logique Anal. Now. Ser., 27 (1984), 87–92. · Zbl 0541.03010
[93] Pynko, A.P., ’Functional completeness and axiomatizability within Belnap’s four-valued logic and its expansions’, Journal of Applied Non-Classical Logics, 9 (1999), 61–105. · Zbl 1033.03017
[94] Rasiowa, H., ’Algebraische Charakterisierung der intuitionischen Logik mit starker Negation’, Constructivity in Mathematics, Proc. of the Coll. held at Amsterdam 1957, Studies in Logic and the Foundations of Mathematics, 1959, 234–240.
[95] Rasiowa, H., ’N-lattices and constructive logic with strong negation’, Fundamenta Mathematicae, 46 (1958), 61–80. · Zbl 0087.00905
[96] Rasiowa, H., An algebraic approachto non-classical logic, North-Holland Publishing Company, Amsterdam, London, 1974. · Zbl 0299.02069
[97] Rasiowa, H., Algebraic Models of Logics Warsaw, 2001.
[98] Rasiowa, H., and R. Sikorski, ’Algebraic treatment of the notion of satisfiability’, Fund. Math. 40 (1953), 62–95. · Zbl 0053.00205
[99] Rasiowa, H., and R. Sikorski, The Mathematics of Metamathematcs, Warsawa 1963. · Zbl 0122.24311
[100] Rauszer, C., ’Representation theorem for semi-boolean algebras’. I (and II). Bul. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phis., 19 (1971), I: 881–887; II: 889–899. · Zbl 0227.02036
[101] Rauszer, C., ’A formalization of propositional calculus of H-B logic’, Studia Logica, 33 (1974), 24–34. · Zbl 0289.02015 · doi:10.1007/BF02120864
[102] Rauszer, C., S’emi-boolean algebras and their applications to intuitionistic logic with dual operations’, Fund. Math., 85 (1974), 219–249 · Zbl 0298.02064
[103] Rauszer, C., ’On the strong semantical completeness of H-B predicate calculus’, Bul. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phis., 24 (1976), 81–87. · Zbl 0343.02015
[104] Rauszer, C., ’An algebraic approach to Heyting-Brouwer predicate calculus’, Fund. Math., 96 (1977), 127–135. · Zbl 0365.02047
[105] Rauszer, C., ’Applications of Kripke models to Heyting-Brouwer logic’, Studia Logica, 36 (1977), 61–72. · Zbl 0361.02033 · doi:10.1007/BF02121115
[106] Rauszer, C., ’An algebraic and Kripke-style approach to a certain extension of intuitionistic logic’, Disertationes Math., 157 (1980), 1–62. · Zbl 0442.03024
[107] Routley, R., ’Semantical Analyses of Propositional Systems of Fitch and Nelson’, Studia Logica 33, (3)(1974), 283–298. · Zbl 0356.02022 · doi:10.1007/BF02123283
[108] Segerberg, K., ’Propositional logics related to Heyting’s and Johansson’s’, Theoria, 34 (1968), 26–61.
[109] Sendlewski, A., ’Topological duality for Nelson algebras and its applications’, Bull. Sect. Logic, Pol. Acad. Sci., 13 (1984), 215–221. · Zbl 0561.06007
[110] Sendlewski, A., ’Some investigations of varieties of N-lattices’, Studia Logica, 43 (1984), 257–280. · Zbl 0585.03039 · doi:10.1007/BF02429842
[111] Sendlewski, A., ’Nelson algebras through Heyting ones’, Studia Logica, 49 (1990), 106–126. · Zbl 0714.06004 · doi:10.1007/BF00401557
[112] Sendlewski, A, ’Axiomatic extensions of the constructive logic with strong negation and disjunction property’, Studia Logica, 55 (1995), 377–388. · Zbl 0840.03052 · doi:10.1007/BF01057804
[113] Shramko, Y., ’Semantics for constructive negations’, in H. Wansing (ed.), Essays on Non-Classical Logic, World Scientiphic, New Jersey-London-Singapore-Hong Kong, 2001, pp. 187–217. · Zbl 0997.03004
[114] Shramko, Y., ’Dual Intuitionistic Logic and a Variety of Negations: The Logic of Scientiphic Research’, Studia Logica, 80 (2005), 347–367. · Zbl 1085.03022 · doi:10.1007/s11225-005-8474-7
[115] Shramko, Y., J.M. Dunn, and T. Tanaka, ’The trilattice of constructive truth values’, Journal of Logic and Computation, 11 (2001), 761–788. · Zbl 0996.03014 · doi:10.1093/logcom/11.6.761
[116] Thomason, R.H., ’A Semantical Study of Constructible Falsity’, Zeitschrift fur Mathematische Logik 15 (1969), 247–257. · Zbl 0181.00901 · doi:10.1002/malq.19690151602
[117] Vakarelov, D., ’Ekstensional Logics’ (in Russian), Doklady BAN, 25 (1972), 1609–1612. · Zbl 0253.02024
[118] Vakarelov, D., ’Representation theorem for semi-Boolean algebras and semantics for HB-predicate logic’, Acad. Polon. Sci. Ser. Math. Phis., 22 (1974), 1087–1095. · Zbl 0301.02066
[119] Vakarelov, D., ’Models for constructive logic with strong negation’, V Balkan Mathematical Congress, Abstracts, Beograd, 1974, p. 298. · Zbl 0301.02066
[120] Vakarelov, D., ’Generalized Nelson Lattices’, IVth Allunion Conference on Mathematical Logic, Abstracts, Kishinev, 1976.
[121] Vakarelov, D., ’Theory of Negation in Certain Logical Systems. Algebraic and Semantical Approach’, Ph.D. dissertation, University of Warsaw, 1976.
[122] Vakarelov, D., ’Notes on N-lattices and constructive logic with strong negation’, Studia Logica 36 (1977), 109–125. · Zbl 0385.03055 · doi:10.1007/BF02121118
[123] Vakarelov, D., ’Intuitive Semantics for Some Three-valued Logics Connected with Information, Contrariety and Subcontrariety’, Studia Logica, XLVIII, 4 (1989), 565–575. · Zbl 0705.03008 · doi:10.1007/BF00370208
[124] Vakarelov, D., ’Consistency, Completeness and Negation’, in Gr. Priest, R. Routley, and J. Norman (eds.), Paraconsistent Logic. Essays on the Inconsistent. Analiytica, Philosophia Verlag, Munhen, 1989, 328–363.
[125] Vakarelov, D., ’Constructive Negation on the Base of Weaker Versions of Intuitionistc Negation’, Studia Logica, 80, No 2–3 (2005), 393–430. · Zbl 1086.03026 · doi:10.1007/s11225-005-8476-5
[126] Vorob’ev, N. N., ’Constructive propositional calculus with strong negation’ (in Russian), Doklady Academii Nauk SSSR, 85 (1952), 456–468.
[127] Vorob’ev, N.N, ’The problem of deducibility in constructive propositional calculus withstrongnegation’ (in Russian). Doklady Akademii Nauk SSR, 85 (1952), 689–692.
[128] Vorob’ev, N. N., ’Constructive propositional calculus with strong negation’ (in Russian), Transactions of Steklov’s institute, 72 (1964), 195–227.
[129] Wagner, G., ’Logic programming with strong negation and inexact predicates’, J. Log. Comput., 1, No.6 (1991), 635–659. · Zbl 0738.68018 · doi:10.1093/logcom/1.6.835
[130] Wagner, G., Vivid Logic. Knowledge-Based reasoning with Two Kinds of Negation Springer LNAI 764, 1994. · Zbl 0806.68105
[131] Wansing, H., The Logic of Information Structures Springer LNAI 681, 1993.
[132] Wansing, H., Informational Intererpretation of substructural Propositional Logics, Journal of logic Language and Information, 2 (1993), 285–308. · Zbl 0795.03014 · doi:10.1007/BF01181683
[133] Wansing, H., ’Semantics-based nonmonotonic inference’. Notre Dame Journal of Formal Logic, 36 (1995), 44–54. · Zbl 0839.03012 · doi:10.1305/ndjfl/1040308828
[134] Wansing, H., ’Displaying in the modal logic of consistency’, Journal of Symbolic Logic, 64 (1999), 1573–1590, 68 (2003), 712. · Zbl 0964.03020 · doi:10.2307/2586798
[135] Wansing, H., ’Negation as Falsity: a Reply to Tennant’, in D. Gabbay and H. Wansing (eds.), What is Negation? Kluwer Academic Publishers, Dorderecht, 1999, pp. 223–238. · Zbl 0981.03008
[136] Wansing, H., ’Higher-arity Gentzen Systems for Nelson’s Logic’, in J. Nida-Rümelin (ed.), Rationalität, Realismus, Revision (GAP3), de Gruyter, Berlin, 1999, pp. 105–109.
[137] Wansing, H., ’The Idea of Proof-theoretic Semantics’, Studia Logica, 64 (2000), 3–20. · Zbl 0947.03072 · doi:10.1023/A:1005217827758
[138] Wansing, H., ’Negation’, in L. Goble (ed.), The Balackwell Guide to Philosophical Logic, Basil Blackwell Publishers, Cambridge/MA, 2001, pp. 415–436.
[139] Wansing, H., ’Logical connectives for constructive modal logic’, Synthese, 2005, to appear. · Zbl 1111.03019
[140] Wansing, H., ’Connexive Modal Logic’, in R. Schmidt et al. (eds.), Advances in Modal Logic, vol. 5, King’s Colleage Publications, London, 2005, pp. 367–383. · Zbl 1107.03017
[141] Wolski M., ’Complete Orders, Categories and Lattices of Approximations’, Fundamenta Informaticae, 2006, to appear. · Zbl 1096.03067
[142] Zaslawskij, I.D., Symmetrical Constructive Logic (in Russian), Erevan, 1978.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.