×

High frequency solutions for the singularly-perturbed one-dimensional nonlinear Schrödinger equation. (English) Zbl 1116.34067

Summary: This article is devoted to the nonlinear Schrödinger equation \[ \varepsilon^2 u'' - V(x)u + | u|^{p-1}u = 0 \] when the parameter \(\varepsilon\) approaches zero, where \(p>1\) and potential \(V(x)\) is positive and of class \(C^1\). All possible asymptotic behaviors of bounded solutions can be described by means of envelopes, or alternatively by adiabatic profiles. We prove that for every envelope, there exists a family of solutions reaching that asymptotic behavior, in the case of bounded intervals. We use a combination of the Nehari finite dimensional reduction together with degree theory. Our main contribution is to compute the degree of each cluster, which is a key piece of information in order to glue them.

MSC:

34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
34E15 Singular perturbations for ordinary differential equations

References:

[1] Ai, S.: Multi-pulse like orbits for a singularly perturbed nearly integrable system. J. Differential Equations 179, 384–432 (2002) · Zbl 1038.34054 · doi:10.1006/jdeq.2001.4046
[2] Ai, S.: Multi-bump solutions to Carrier’s problem. J. Math. Anal. Appl. 277, 405–422 (2003) · Zbl 1028.34051 · doi:10.1016/S0022-247X(02)00346-3
[3] Ai, S., Chen, X., Hastings, S.: Layers and spikes in Non homogeneous bistable reaction-diffusion equations. To appear Trans. Amer. Math. Soc · Zbl 1087.35007
[4] Ai, S., Hastings, S.: A shooting approach to layers and chaos in a forced Duffing equation J. Differential Equations 185, 389–436 (2002) · Zbl 1025.34015 · doi:10.1006/jdeq.2002.4166
[5] Alessio, F., Montecchiari, P.: Multibump solutions for a class of Lagrangian systems slowly oscillating at infinity. Ann. Inst. H. Poincaré Anal. Non Linéaire 16, 107–135 (1999) · Zbl 0919.34044 · doi:10.1016/S0294-1449(99)80009-2
[6] Alikakos, N., Bates, P.W., Fusco, G.: Solutions to the nonautonomous bistable equation with specified Morse index. I. Existence. Trans. Amer. Math. Soc. 340, 614–654 (1993) · Zbl 0788.34012
[7] Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd ed. Springer-Verlag, Berlin, 1989
[8] Berestycki, H.: Le nombre de solutions de certains problèmes semi-linéaires elliptiques. J. Funct. Anal. 40, 1–29 (1981) · Zbl 0452.35038 · doi:10.1016/0022-1236(81)90069-0
[9] Bourland, F., Haberman, R.: Separatrix crossing: Time potentials with dissipation. SIAM J. Appl. Math. 50, 1716–1744 (1990) · Zbl 0714.34052 · doi:10.1137/0150102
[10] Chow, S.-N., Wang, D.: On the monotonicity of the period function of some second order equations. Caposis Pest. Mat. 111, 14–25 (1986) · Zbl 0603.34034
[11] Coti Zelati, V., Rabinowitz, P.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Amer. Math. Soc. 4, 693–727 (1992) · Zbl 0744.34045 · doi:10.2307/2939286
[12] del Pino, M., Felmer, P., Tanaka, K.: An elementary construction of complex patterns in nonlinear Schrödinger equations. Nonlinearity 15, 1653–1671 (2002) · Zbl 1022.34037 · doi:10.1088/0951-7715/15/5/315
[13] Felmer, P., Torres, J.J.: Semi classical limits for the nonlinear Schrödinger equation. Commun. Contemp. Math. 4, 481–512 (2002) · Zbl 1044.34013 · doi:10.1142/S0219199702000749
[14] Felmer, P., Martínez, S.: High energy solutions for a phase transition problem. J. Differential Equations 194, 198–220 (2003) · Zbl 1054.34030 · doi:10.1016/S0022-0396(03)00194-3
[15] Felmer, P., Martínez, S., Tanaka, K.: Multi-clustered high energy solutions for a phase transition problem. Proc. Roy. Soc. Edinburgh Sect. A 135, 731–765 (2005) · Zbl 1148.34319 · doi:10.1017/S0308210500004091
[16] Felmer, P., Martínez, S., Tanaka, K.: High frequency chaotic solutions for a slowly varying dynamical system. To appear in Ergodic Theory Dynam Systems · Zbl 1156.34033
[17] Gedeon, T., Kokubu, H., Mischaikow, K., Oka, H.: Chaotic solutions in slowly varying perturbations of Hamiltonian systems with applications to shallow water sloshing. J. Dynam. Differential Equations 14, 63–84 (2002) · Zbl 1005.37028 · doi:10.1023/A:1012967211737
[18] Hastings, S., Mc Leod, K.: On the periodic solutions of a forced second order equation. J. Nonlinear Sci. 1, 225–245 (1991) · Zbl 0801.34040 · doi:10.1007/BF01209067
[19] Kang, X., Wei, J.: On interacting bumps of semi-classical states of nonlinear Schrödinger equations. Adv. Differential Equations 5, 899–928 (2000) · Zbl 1217.35065
[20] Kurland, H.: Monotone and oscillating equilibrium solutions of a problem arising in population genetics. Nonlinear Partial Differential Equations (Durham, N.H., 1982), 323–342, Contemporary Mathematics, Volume 17, Providence, R.I.: American Mathematical Society, 1983 · Zbl 0572.35060
[21] Nakashima, K.: Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation. J. Differential Equations 191, 234–276 (2003) · Zbl 1034.34024 · doi:10.1016/S0022-0396(02)00181-X
[22] Nakashima, K.: Stable transition layers in a balanced bistable equation. Differ. Integral Equ. Appl. 13(7–9), 1025–1038 (2000) · Zbl 0981.34011
[23] Nakashima, K., Tanaka, K.: Clustering layers and boundary layers in spatially in-homogeneous phase transition problems. Ann. Inst. H. Poincaré Anal Non Linéaire, 20, 107–143 (2003) · Zbl 1114.35005 · doi:10.1016/S0294-1449(02)00008-2
[24] Nehari, Z.: Characteristic values associated with a class of nonlinear second-order differential equations. Acta Math. 105, 141–175 (1961) · Zbl 0099.29104 · doi:10.1007/BF02559588
[25] Neishtadt, A.: Passage through a separatrix in a resonance problem with a slowly-varying parameter. PPM 39, 621–632 (1975)
[26] Neishtadt, A.: About changes of adiabatic invariant at passage through separatrix. Plasma Physics 12, 992–1001 (1986)
[27] Séré, E.: Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z. 209, 27–42 (1991) · Zbl 0725.58017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.