×

Lower bounds for eigenfunctions on Riemannian manifolds. (English) Zbl 0619.58038

Let M be a complete Riemannian manifold with Ricci curvature bounded below by -(n-1)c, \(c>0\). Suppose \(\phi \in L^ 2M\) is an eigenfunction of the Laplacian \(\Delta\) with eigenvalue \(\mu\) lying below the essential spectrum. If \(\mu\) is the infimum of the spectrum, we give an exponential lower bound for \(\phi\), requiring only a lower bound on the Ricci curvature of M. When \(\mu\) lies above the infimum, we give a lower bound with exponential decay for the spherical averages of \(\phi\), imposing several restrictive hypotheses on M. In particular, M must be simply connected and negatively curved with sectional curvatures approaching -1 at infinity.

MSC:

58J70 Invariance and symmetry properties for PDEs on manifolds
53C20 Global Riemannian geometry, including pinching

References:

[1] Bardos, C., Merigot, M.: Asymptotic decay of the solution of a second order elliptic equation in an unbounded domain, applications to the spectral properties of a Hamiltonian. Proc. R. Soc. Edinb.76A, 323-344 (1977) · Zbl 0351.35009
[2] Cheeger, J., Yau, S.T.: A lower bound for the heat kernel. Commun. Pure Appl. Math.34, 465-480 (1981) · Zbl 0481.35003 · doi:10.1002/cpa.3160340404
[3] Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math.28, 333-354 (1975) · Zbl 0312.53031 · doi:10.1002/cpa.3160280303
[4] Dodziuk, J.: Maximum principle for parabolic inequalities and the heat flow on open manifolds. Indiana Univ. Math. J.32, 703-716 (1983) · Zbl 0526.58047 · doi:10.1512/iumj.1983.32.32046
[5] Donnelly, H.: Eigenforms of the Laplacian on complete Riemannian manifolds. Commun Partial Differ. Equations9, 1299-1321 (1984) · Zbl 0552.58027 · doi:10.1080/03605308408820364
[6] Donnelly, H.: Eigenvalues embedded in the continuum for negatively curved manifolds. Mich. Math. J.28, 53-62 (1981) · Zbl 0463.53028 · doi:10.1307/mmj/1029002457
[7] Donnelly, H.: On the essential spectrum of a complete Riemannian manifold. Topology20, 1-14 (1981) · Zbl 0463.53027 · doi:10.1016/0040-9383(81)90012-4
[8] Fischer-Colbrie, D., Schoen, R.: The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature. Commun. Pure Appl. Math.33, 199-211 (1980) · Zbl 0439.53060 · doi:10.1002/cpa.3160330206
[9] Glazman, I.M.: Direct methods of qualitative spectral analysis of singular differential operators. New York: Davey 1966 · Zbl 0171.22801
[10] Greene, R., Wu, H.: Function theory manifolds which possess a pole. Lecture Notes in Mathematics, Vol. 699. Berlin Heidelberg New York: Springer 1979 · Zbl 0414.53043
[11] Hartman, P.: Ordinary differential equations. New York: Wiley 1964 · Zbl 0125.32102
[12] Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications. Grundlehren, 181. Berlin Heidelberg New York: Springer 1972 · Zbl 0223.35039
[13] Reed, M., Simon, B.: Methods of modern mathematical physics IV, Analysis of Operators. New York: Academic Press 1978 · Zbl 0401.47001
[14] Treves, F.: Basic linear partial differential equations. New York: Academic Press 1975
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.