×

The \(p\)-spectrum of the Laplacian on compact hyperbolic three manifolds. (English) Zbl 0801.53034

Let \(M\) be a compact hyperbolic 3-dimensional manifold with volume \(V\) and diameter \(R\). Let \(N(0,\lambda)\) denote the number of eigenvalues of the Laplacian on \(p\)-forms for \(p = 1,2\) which are less than or equal to \(\lambda\). The author shows there are universal constants so that \[ N\left(0,{1\over c_ 1 V(1+R^ 2)}\right) \leq c_ 2 V; \] this bounds the number of small eigenvalues for the Laplacian. Furthermore, this estimate is qualitatively sharp; the dimension of the space of coexact eigenforms of degree 1 with eigenvalues in the interval \((0,R^{-2})\) is at least \(c_ 3 V\) if \(R\) is sufficiently large.
Reviewer: P.Gilkey (Eugene)

MSC:

53C20 Global Riemannian geometry, including pinching
58J50 Spectral problems; spectral geometry; scattering theory on manifolds

References:

[1] Ballmann, W., Gromov, M., Schroeder, V.: Manifolds of nonpositive curvature. (Prog. Math., vol. 61) Boston Basel Stuttgart: Birkh?ser 1985 · Zbl 0591.53001
[2] Bott, R., Tu, L.W.: Differential, forms in algebraic topology. Berlin Heidelberg New York: Springer 1982 · Zbl 0496.55001
[3] Buser, P.: On Cheeger’s inequality ?1 ?h 2/4. In: Osserman, R., Weinstein, A. (eds.) Geometry of the Laplace operator. (Proc. Symp. Pure Math., vol. 36 pp. 29-77) Providence, RI: Am. Math. Soc. 1980 · Zbl 0432.58024
[4] Buser, P., Colbois, B., Dodziuk, J.: tubes and eigenvalues for negatively curved manifolds. (Preprint) · Zbl 0766.58054
[5] Chavel, I.: Eigenvalues in Riemannian geometry. New York London: Academic Press 1984 · Zbl 0551.53001
[6] Cheeger, J.: On the Hodge theory of Riemannian manifolds. In: Osserman, R., Weinstein, A. (eds.) Geometry of the Laplace operator. (Proc. Symp. Pure Math., vol. 36, pp. 91-146) Providence, RI: Am. Math. Soc. 1980
[7] Cheeger, J.: Spectral geometry of singular Riemannian spaces. J. Differ. Geom.18, 575-657 (1983) · Zbl 0529.58034
[8] Colbois, B., Courtois, G.: A note on the first nonzero eigenvalue of the Laplacian acting onp-forms. Manuscr. Math.64, 143-160 (1990) · Zbl 0709.53031 · doi:10.1007/BF02568757
[9] Colbois, B., Courtois, G.: Convergence de vari?t?s et convergence du spectre du Laplacian. Ann. Sci. ?c. Norm. Sup?r.4, 507-518 (1991) · Zbl 0754.58040
[10] Conner, P.E.: The Neumann problem for differential forms on Riemannian manifolds. Mem. Am. Math. Soc.20 (1956) · Zbl 0070.31404
[11] de Rham, G.: Vari?t?s diff?rentiables. Paris: Hermann 1955 · Zbl 0065.32401
[12] Dodziuk, J.: Eigenvalues of the Laplacian on forms. Proc Am. Math. Soc.85, 438-443 (1982) · Zbl 0502.58038 · doi:10.1090/S0002-9939-1982-0656119-2
[13] Dodziuk, J., Randol, B.: Lower bounds for ?1 on a finite-volume hyperbolic manifold. J. Differ. Geom.24, 133-139 (1986) · Zbl 0594.53036
[14] Gaffney, M.P.: The harmonic operator for exterior differential forms. Proc. Natl. Acad. Sci.37, 48-50 (1951) · Zbl 0042.10205 · doi:10.1073/pnas.37.1.48
[15] Gilkey, P.B.: The index theorem and the heat equation. Wilmington: Pubish or Perish 1974
[16] Gromov, M.: Hyperbolic manifolds according to Thurston and J?rgensen. In: Sem. Bourbaki, vol. 546. (Lect. Notes Math., vol. 842, pp. 40-53) Berlin Heidelberg Ney York: Springer 1979
[17] Mazzeo, R., Phillips, R.: Hodge theory on hyperbolic manifolds. Duke Math. J.60, 509-559 (1990) · Zbl 0712.58006 · doi:10.1215/S0012-7094-90-06021-1
[18] Payne, L.E., Weinberger, H.F.: An optimal Poincar? inequality for convex domains. Arch. Ratio. Mech. Anal.5, 286-292 (1960) · Zbl 0099.08402 · doi:10.1007/BF00252910
[19] Ray, D.B., Singer, I.M.:R-torsion and the Laplacian on Riemannian manifolds. Adv. Math.7, 145-210 (1971) · Zbl 0239.58014 · doi:10.1016/0001-8708(71)90045-4
[20] Schoen, R.: A lower bound for the first eigenvalue of a negatively curved manifold. J. Differ. Geom.17, 233-238 (1982) · Zbl 0516.53048
[21] Schoen, R., Wolpert, S., Yau, S.T.: Geometric bounds on the low eigenvalues of a compact surface. In: Osserman, R., Weinstein, A. (eds.) Geometry of the Laplace operator. (Proc. Symp. Pure Math., vol. 36, pp. 279-285) Providence, RI: Am. Math. Soc. 1980 · Zbl 0446.58018
[22] Thurston, W.: The geometry and topology of 3-manifolds. Lecture Notes, Dept. of Math. Princeton, NJ: Princeton University 1980
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.