×

Nonlinear thin shell finite element with six degrees of freedom per node. (English) Zbl 0705.73224

Summary: The paper describes the features of the JET shell element, a new thin shell curved finite element, based on Marguerre’s theory. The element is quadrilateral with corner nodes only; each node has six degrees of freedom, i.e. three translations and three rotations. We emphasize here the physical aspects rather than the equations and give an explanation of the element, choice, difficulties encountered and their solutions, the resulting element and its capabilities, through various examples in linear, nonlinear and instability analysis.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K15 Membranes
Full Text: DOI

References:

[1] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (1987), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0634.73056
[2] Jetteur, Ph., Nonlinear shell elements based on Marguerre theory, IREM Int. Report 85/5 (1985)
[3] Jetteur, Ph., A shallow shell element with in-plane rotational degrees of freedom, IREM Int. Report 86/3 (1986)
[4] Jetteur, Ph.; Frey, F., A four node Marguerre element for nonlinear shell analysis, Engrg. Comput., 3, 276-282 (1986)
[5] Jetteur, Ph., Improvement of the quadrangular JET shell element for a particular class of shell problems, IREM Int. Report 87/1 (1987)
[6] Jetteur, Ph., Improvement and large rotations of the JET shell element in nonlinear analysis, IREM Int. Report 87/4 (May 1987)
[7] Idelsohn, S., On the use of deep, shallow or flat shell finite elements for the analysis of thin shell structures, Comput. Methods Appl. Mech. Engrg., 26, 321-330 (1981) · Zbl 0461.73062
[8] Batoz, J. L.; Tahar, M. Ben, Evaluation of a new quadrilateral thin plate bending element, Internat. J. Numer. Methods Engrg., 18, 1655-1677 (1982) · Zbl 0489.73080
[9] Allman, D. J., A compatible triangular element including vertex rotations for plane elasticity analysis, Comput. Struct., 19, 1-8 (1984) · Zbl 0548.73049
[10] de Ville de Goyet, V.; Frey, F., Use of Marguerre theory in the nonlinear analysis of beam and plate structures, (Robinson, J., Proc. 4th World Congress ART in FEM Technol.. Proc. 4th World Congress ART in FEM Technol., Interlaken (1984))
[11] Stolarski, H.; Belytschko, T.; Carpenter, N.; Kennedy, J. M., A simple triangular curved shell element, Engrg. Comput., 1, 210-218 (1984)
[12] Hughes, T. J.R.; Liu, W. K., Nonlinear finite element analysis of shells: Part 1, Three-dimensional shells, Comput. Methods Appl. Mech. Engrg., 26, 331-362 (1981) · Zbl 0461.73061
[13] Rankin, C. C.; Brogan, F. A., An element-independent corotational procedure for the treatment of large rotations, (Collapse Analysis of Structures, ASME, PVP, 84 (1981)), 85-100
[14] Carnoy, E., Etude de la stabilité élastique des coques par éléments finis, (Thèse de doctorat, LTAS (1980), Univ. de Liège)
[15] Jetteur, Ph., Implicit integration algorithm for elastoplasticity in plane stress analysis, Engrg. Comput., 3, 251-253 (1986)
[16] Simo, J. C.; Taylor, R. L., A return mapping algorithm for plane stress elastoplasticty, Internat. J. Numer. Methods Engrg., 22, 649-670 (1986) · Zbl 0585.73059
[17] Stanley, G. M.; Park, K. C.; Hughes, T. J.R., Continuum-based resultant shell elements, (Hughes, T. J.R.; Hinton, E., Finite Element Methods for Plates and Shell Structures. Finite Element Methods for Plates and Shell Structures, Element Technology, Vol. 1 (1986), Pineridge: Pineridge Swansea, U.K)
[18] MacNeal, R. H.; Harder, R. L., A proposed standard set of problems to test finite element accuracy, Finite Elements Analysis Design, 1, 3-20 (1985)
[19] Carnoy, E., Tests complémentaires de la coque isoparamétrique, (Rapport SF-113 (1982), Univ. de Liège), LTAS
[20] Horne, M. R.; Narayanan, R., Further tests on the ultimate load capacity of longitudinally stiffened panels (1974), Simon Eng. Lab., Univ. of Manchester
[21] Puthli, R. S.; Bijlaard, F. S.K.; Stol, H. G.A., Theoretical background to the solution of highly nonlinear inelastic buckling and collapse problems in stiffened panels, (Report Nr. BI-83-42/63.6.0829 (1983), IBBC-TNO: IBBC-TNO Delft)
[22] Munier, M., Etude GIS: Mise en forme et plissement des tôles en cours d’emboutissage Rapport USINOR No. 16849.84.NL (1984)
[23] Jaamei, S., Etude de différentes formulations lagrangiennes pour l’analyse non-linéaire des plaques et coques minces élasto-plastiques en grands déplacements et grandes rotations, (Thèse de doctorat (1986), Univ. de Tech, de Compiègne: Univ. de Tech, de Compiègne France)
[24] Agelidis, N., Buckling of stringer stiffened shells under axial and pressure loading, (Ph.D. Thesis (1984), Univ. of London)
[25] Trueb, U., Stability problems of elasto-plastic plates and shells by finite elements, (Ph.D. Thesis (1983), Imperial College: Imperial College London)
[26] Gierlinski, J. T.; Knowles, N. C., Evaluation of incremental-iterative procedures for nonlinear structural problems, (Robinson, J., Quality Assurance in FEM Technology, Proc. 5th World Congress on FEM. Quality Assurance in FEM Technology, Proc. 5th World Congress on FEM, Salzburg, Austria (October 1987))
[27] J.T. Gierlinski, Private communication (in relation with the ASAS finite element system), 1986.; J.T. Gierlinski, Private communication (in relation with the ASAS finite element system), 1986.
[28] FINEL-G, Nonlinear finite element analysis program, (IREM Internal Report 86/6. IREM Internal Report 86/6, User’s manual (July 1986))
[29] Allman, D. J., The constant strain triangle with drilling rotations: a simple prospect for shell analysis, (Technical Report 86051 (1986), Royal Aircraft Establishment: Royal Aircraft Establishment Farnborough, Hants, U.K) · Zbl 0684.73030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.