×

The Chebyshev ridge polynomials in 2D tensor tomography. (English) Zbl 1123.44001

Let \({\mathbf S}_m\) be the space of symmetric \(m\)-covariant tensors in \(\mathbb R^2\) and \(L_2({\mathbb D},{\mathbf S}_m)\) the space of \(L^2\) symmetric \(m\)-covariant tensor fields \({\mathbf a}^{(m)}\) on the unit disk \(\mathbb D\) in \(\mathbb R^2\). The authors extend the classical Radon transform \({\mathcal R}\) on \(\mathbb D\) to tensor fields \({\mathbf a}^{(m)}\) by applying it componentwise, and define the \(m\)-tensor Radon probe transform \({\mathcal R}_m\) on \(L_2({\mathbb D},{\mathbf S}_m)\) as follows:
\[ [{\mathcal R}_m{\mathbf a}^{(m)}](s,\phi)=\langle(\theta^\bot)^m,[{\mathcal R}{\mathbf a}^{(m)}](s,\phi)\rangle_{{\mathbf S}_m}, \]
where \(s\in[-1,1],\;\phi\in[0,2\pi)\), and \((\theta^\bot)^m\) is the probe tensor vector. Let \({\mathbf H}({\mathbb D},{\mathbf S}_m;\delta=0)\) denote the solenoidal subspace of \(L_2({\mathbb D},{\mathbf S}_m)\) according to the Helmholtz-Hodge decomposition of \(L_2({\mathbb D},{\mathbf S}_m)\).
In this paper, when \(m=1\) and \(m=2\), the authors reconstruct the solenoidal fields \({\mathbf a}_{sol}^{(m)}\in{\mathbf H}({\mathbb D},{\mathbf S}_m;\delta=0)\) from their Radon transforms \({\mathcal R}_m{\mathbf a}_{sol}^{(m)}(s,\phi)\). In this process the Fourier series expansions based on an orthogonal basis for \(L_2({\mathbb D},{\mathbf S}_m)\) are necessary. They obtain a new orthogonal polynomial basis for \(L_2({\mathbb D},{\mathbf S}_m)\) and for \({\mathbf H}({\mathbb D},{\mathbf S}_m;\delta=0)\) that is built with the help of bivariate Chebyshev ridge polynomials. The numerical results of a novel inversion algorithm based on their expansions are presented.

MSC:

44A12 Radon transform
92C55 Biomedical imaging and signal processing
65R32 Numerical methods for inverse problems for integral equations
65R10 Numerical methods for integral transforms
Full Text: DOI

References:

[1] H. Aben, Integrated Photoelasticity. McGraw-Hill, New-York, 1979.
[2] DOI: 10.1023/A:1015184110888 · Zbl 1027.76039 · doi:10.1023/A:1015184110888
[3] M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging. IOP Publishing, Bristol, 1998. · Zbl 0914.65060
[4] DOI: 10.1109/78.80830 · Zbl 0726.92012 · doi:10.1109/78.80830
[5] DOI: 10.2307/2695643 · Zbl 1038.53017 · doi:10.2307/2695643
[6] R. Dautray and J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. V. 3. Spectral Theory and Applications. Springer, 2000. · Zbl 0944.47002
[7] DOI: 10.1163/1569394042545111 · doi:10.1163/1569394042545111
[8] Bezuglova M. A., J. Inv. Ill-Posed Problems 10 (2) pp 125– (2002)
[9] Bull. AMS 5 (3) pp 235– (1981)
[10] DOI: 10.1307/mmj/1029004682 · Zbl 0798.42022 · doi:10.1307/mmj/1029004682
[11] Ch.F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and its Applications, Vol. 81. Cambridge Univ. Press, 2001. · Zbl 0964.33001
[12] Gil-Medrano O., New York J. Math. 1 pp 10– (1994)
[13] DOI: 10.1163/1569394042215865 · doi:10.1163/1569394042215865
[14] F. Natterer and F. Wubbeling, Mathematical Methods in Image Reconstruction. Philadelphia, SIAM, 2001.
[15] DOI: 10.1088/0266-5611/14/1/015 · Zbl 0897.44002 · doi:10.1088/0266-5611/14/1/015
[16] L. N. Pestov, Questions of Correctness of Ray Tomography Problems. Sib. Sci. Publ., Novosibirsk, 2003 (in Russian).
[17] DOI: 10.1137/S0036141097322959 · Zbl 0927.41006 · doi:10.1137/S0036141097322959
[18] DOI: 10.1007/s00211-003-0512-7 · Zbl 1071.65178 · doi:10.1007/s00211-003-0512-7
[19] DOI: 10.1088/0266-5611/17/4/312 · Zbl 0988.65121 · doi:10.1088/0266-5611/17/4/312
[20] V. A. Sharafutdinov, Integral Geometry of Tensor Fields. VSP, Utrecht, 1994. · Zbl 0883.53004
[21] DOI: 10.1088/0266-5611/11/5/009 · Zbl 0836.44003 · doi:10.1088/0266-5611/11/5/009
[22] G. Sparr and K. Strahlen, Vector field tomography: an overview. tech. rep. Mathematical Imaging Group, Centre for Mathematical Sciences, Lund Institute of Technology, Lund, Sweden, 1998.
[23] K. Strahlen, Studies of Vector Tomography. Ph. D. thesis. Lund University, 1999.
[24] I. I. Vekua, Tensor Analysis. Nauka, 1988.
[25] DOI: 10.1215/S0012-7094-40-00725-6 · Zbl 0026.02001 · doi:10.1215/S0012-7094-40-00725-6
[26] DOI: 10.1007/BF02123473 · Zbl 0822.42020 · doi:10.1007/BF02123473
[27] DOI: 10.1090/S0025-5718-00-01245-X · Zbl 0963.65155 · doi:10.1090/S0025-5718-00-01245-X
[28] DOI: 10.1112/S0024609300007001 · Zbl 1032.33005 · doi:10.1112/S0024609300007001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.