×

Diophantine approximation and badly approximable sets. (English) Zbl 1098.11039

A real number \(x\) is called badly approximable if there is a positive constant \(c(x)\) such that \(| x-p/q| \geq c(x)/q^2\) for every rational \(p/q\). An old result of I. Jarník states that the Hausdorff dimension of badly approximable numbers equals 1. The authors consider a far-reaching generalization, where the points \(x\) belong to a compact subspace \(\Omega\) of a metric space \(X\) containing the support of a non-atomic finite measure, and the rational points \(p/q\) are replaced by a family of subsets of \(X\) called resonant sets. In this general setting the authors prove that under various natural conditions, the badly approximable subsets of \(\Omega\) have full Hausdorff dimension. There are applications from number theory (classical, complex, \(p\)-adic and formal power series) and dynamical systems (iterated function schemes, rational maps and Kleinian groups).

MSC:

11J83 Metric theory
11J61 Approximation in non-Archimedean valuations
28A80 Fractals
37C45 Dimension theory of smooth dynamical systems
37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets

References:

[1] Abercrombie, A. G., Badly approximable \(p\)-adic integers, Proc. Indian Acad. Sci. Math. Sci., 105, 2, 123-134 (1995) · Zbl 0856.11035
[2] Abercrombie, A. G.; Nair, R., An exceptional set in the ergodic theory of rational maps of the Riemann sphere, Ergodic Theory Dynamical Systems, 17, 2, 253-267 (1997) · Zbl 0874.58063
[3] V. Beresnevich, H. Dickinson, S.L. Velani, Measure theoretic laws for limsup sets, Mem. Amer. Math. Soc. (2003) 1-83, to appear, pre-print on; V. Beresnevich, H. Dickinson, S.L. Velani, Measure theoretic laws for limsup sets, Mem. Amer. Math. Soc. (2003) 1-83, to appear, pre-print on
[4] Bishop, C. J.; Jones, P. W., Hausdorff dimension and Kleinian groups, Acta Math., 179, 1, 1-39 (1997) · Zbl 0921.30032
[5] M.M. Dodson, S. Kristensen, Hausdorff dimension and Diophantine approximation, in: Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, part 1, Proceedings of Symposia in Pure Mathematics, Part 1, American Mathematical Society, Providence, RI, 2004, pp. 305-347.; M.M. Dodson, S. Kristensen, Hausdorff dimension and Diophantine approximation, in: Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, part 1, Proceedings of Symposia in Pure Mathematics, Part 1, American Mathematical Society, Providence, RI, 2004, pp. 305-347. · Zbl 1196.11104
[6] Falconer, K., Fractal Geometry: Mathematical Foundations and Applications (1990), Wiley: Wiley New York · Zbl 0689.28003
[7] Fernández, J. L.; Melián, M. V., Bounded geodesics of Riemann surfaces and hyperbolic manifolds, Trans. Amer. Math. Soc., 347, 9, 3533-3549 (1995) · Zbl 0845.30029
[8] Hill, R.; Velani, S. L., Ergodic theory of shrinking targets, Invent. Math., 119, 175-198 (1995) · Zbl 0834.28009
[9] Hill, R.; Velani, S. L., Metric Diophantine approximation in Julia sets of expanding rational maps, Inst. Hautes Études Sci. Publ. Math., 85, 193-216 (1997) · Zbl 0885.11051
[10] Jarník, I., Zur metrischen Theorie der diophantischen Appoximationen, Prace Mat.-Fiz., 36, 91-106 (1928-29) · JFM 55.0718.01
[11] D. Kleinbock, E. Lindenstrauss, B. Weiss, On fractal measures and Diophantine approximation, Selecta Math., to appear, pre-print on \(\sim \); D. Kleinbock, E. Lindenstrauss, B. Weiss, On fractal measures and Diophantine approximation, Selecta Math., to appear, pre-print on \(\sim \) · Zbl 1130.11039
[12] D. Kleinbock, B. Weiss, Badly approximable vectors on fractals, Israel J. Math., to appear, pre-print on \(\sim \); D. Kleinbock, B. Weiss, Badly approximable vectors on fractals, Israel J. Math., to appear, pre-print on \(\sim \) · Zbl 1092.28004
[13] S. Kristensen, S.L. Velani, Diophantine Approximation and Badly Approximable Sets II, in preparation.; S. Kristensen, S.L. Velani, Diophantine Approximation and Badly Approximable Sets II, in preparation. · Zbl 1098.11039
[14] E. Lutz, Sur les approximations diophantiennes linéaires P-adiques, Actualités Scientifiques et Industrielles, vol. 1224, Hermann & Cie, Paris, 1955.; E. Lutz, Sur les approximations diophantiennes linéaires P-adiques, Actualités Scientifiques et Industrielles, vol. 1224, Hermann & Cie, Paris, 1955. · Zbl 0064.28401
[15] Mahler, K., An analogue to Minkowski’s geometry of numbers in a field of series, Ann. of Math. (2), 42, 488-522 (1941) · JFM 67.0140.01
[16] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995.; P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. · Zbl 0819.28004
[17] Niederreiter, H.; Vielhaber, M., Linear complexity profiles: Hausdorff dimensions for almost perfect profiles and measures for general profiles, J. Complexity, 13, 3, 353-383 (1997) · Zbl 0934.94013
[18] Pollington, A. D.; Velani, S. L., On simultaneously badly approximable pairs, J. London Math. Soc., 66, 29-40 (2002) · Zbl 1026.11061
[19] A.D. Pollington, S.L. Velani, Metric Diophantine approximation and ‘absolutely friendly’ measures, Selecta Math., to appear, pre-print on; A.D. Pollington, S.L. Velani, Metric Diophantine approximation and ‘absolutely friendly’ measures, Selecta Math., to appear, pre-print on · Zbl 1084.11039
[20] Schmidt, W. M., On badly approximable numbers and certain games, Trans. Amer. Math. Soc., 123, 178-199 (1966) · Zbl 0232.10029
[21] Schmidt, W. M., Badly approximable systems of linear forms, J. Number Theory, 1, 139-154 (1969) · Zbl 0172.06401
[22] Schmidt, W. M., Open problems in Diophantine approximation, Approximations diophantiennes et nombres transcendants (Luminy 1982), Progress in Mathematics (1983), Birkhäuser: Birkhäuser Basel · Zbl 0504.00005
[23] M. Urbański, Diophantine approximation of self-conformal measures, J. Number Theory, to appear, pre-print on \(\sim \); M. Urbański, Diophantine approximation of self-conformal measures, J. Number Theory, to appear, pre-print on \(\sim \)
[24] M. Urbański, Diophantine approximation of conformal measures of one-dimensional iterated function systems, Compositio Math., to appear, pre-print on \(\sim \); M. Urbański, Diophantine approximation of conformal measures of one-dimensional iterated function systems, Compositio Math., to appear, pre-print on \(\sim \) · Zbl 0723.92013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.