×

Homoclinic bifurcations for partial differential equations in unbounded domains. (English) Zbl 0707.76050

Summary: The connection between low-dimensional chaos in ordinary differential equations, and turbulence in fluids and other systems governed by partial differential equations, is one that is in many circumstances not clear. We discuss some examples of turbulent fluid flow, and consider ways in which they may be related to much simpler sets of ordinary differential equations, whose behavior can be reasonably well understood. (We are not advocating drastic Fourier truncation.) The generation of aperiodic solutions through the occurrence of homoclinic orbits is briefly analysed for ordinary differential equations, and the same kind of heuristic analysis is sketched for partial differential equations (in one space dimension). It is suggested that such an analysis can explain certain features of chaos, which have been observed in real fluids.

MSC:

76F20 Dynamical systems approach to turbulence
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Aref, Dynamics of a vortex filament in a shear flow, J. Fluid Mech. 148 pp 477– (1984) · Zbl 0627.76063 · doi:10.1017/S0022112084002457
[2] Arneodo, Oscillations with chaotic behavior: An illustration of a theorem by Shil’nikov, J. Statist. Phys. 27 pp 171– (1982) · Zbl 0522.58033 · doi:10.1007/BF01011745
[3] Bretherton, Intermittency through modulational instability, Phys. Lett. 96A pp 152– (1983) · doi:10.1016/0375-9601(83)90491-7
[4] Dodd, Solitons and Nonlinear Wave Equations (1982)
[5] Doering, Low-dimensional behavior in the complex Ginzburg-Landau equation, Nonlinearity 1 pp 279– (1988) · Zbl 0655.58021 · doi:10.1088/0951-7715/1/2/001
[6] Eckmann, Roads to turbulence in dissipative dynamical systems, Rev. Mod. Phys. 53 pp 641– (1981) · Zbl 1114.37301 · doi:10.1103/RevModPhys.53.643
[7] Fenstermacher, Dynamical instabilities and the transition to chaotic Taylor vortex flow, J. Fluid Mech. 94 pp 103– (1979) · doi:10.1017/S0022112079000963
[8] Fowler, Homoclinic bifurcations in n dimensions, Stud. Appl. Math. 83 pp 193– (1990) · Zbl 0716.58021 · doi:10.1002/sapm1990833193
[9] Gaspard, Bifurcation phenomena near homoclinic systems: A two-parameter analysis, J. Statist. Phys. 35 pp 697– (1984) · Zbl 0588.58055 · doi:10.1007/BF01010829
[10] Glendinning, Local and global behaviour near homoclinic orbits, J. Statist. Phys. 35 pp 645– (1984) · Zbl 0588.58041 · doi:10.1007/BF01010828
[11] Hasimoto, A soliton on a vortex filament, J. Fluid Mech. 51 pp 477– (1972) · Zbl 0237.76010 · doi:10.1017/S0022112072002307
[12] Herbert, Turbulence and Chaotic Phenomena in Fluids pp 53– (1984)
[13] Howard, Proceedings of the Eleventh International Congress of Applied Mechanics pp 1109– (1966)
[14] Hyman, Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces, Phys. D 23 pp 265– (1986) · Zbl 0621.76065 · doi:10.1016/0167-2789(86)90136-3
[15] Keefe, Dynamics of perturbed wavetrain solutions to the GinzburgLandau equation, Stud. Appl. Math. 73 pp 91– (1985) · Zbl 0575.76055 · doi:10.1002/sapm198573291
[16] Libchaber, Period-doubling cascade in mercury, a quantitative measurement, J. Phys. Lett. 43 pp L211– (1982) · doi:10.1051/jphyslet:01982004307021100
[17] Lorenz, Deterministic non-periodic flow, J. Atmospheric Sci. 20 pp 131– (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[18] Maslowe, Hydrodynamic Instabilities and the Transition to Turbulence pp 181– (1985)
[19] Orszag, Secondary instability of wall bounded shear flows, J. Fluid Mech. 128 pp 347– (1983) · Zbl 0556.76039 · doi:10.1017/S0022112083000518
[20] Shil’nikov, A case of the existence of a countable number of periodic motions, Soviet Math. Dokl. 6 pp 163– (1985)
[21] Shil’nikov, The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighbourhood of a saddle-focus, Soviet Math. Dokl. 8 pp 54– (1967)
[22] Shil’nikov, A contribution to the problem of the structure of an extended neighbourhood of a rough equilibrium state of saddle-focus type, Mat. Sb. 10 pp 91– (1970) · Zbl 0216.11201 · doi:10.1070/SM1970v010n01ABEH001588
[23] Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors (1982) · Zbl 0504.58001 · doi:10.1007/978-1-4612-5767-7
[24] Sparrow, Observations and other characteristics of thermals, J. Fluid Mech. 41 pp 793– (1970) · doi:10.1017/S0022112070000927
[25] Spiegel, Chaos, A mixed metaphor for turbulence, Proc. Roy. Soc. London Ser. A 413 pp 87– (1987) · Zbl 0629.76066 · doi:10.1098/rspa.1987.0102
[26] Stuart, On the non-linear mechanics of wave disturbances in stable and unstable parallel flows, J. Fluid Mech. 9 pp 353– (1960) · Zbl 0096.21102 · doi:10.1017/S002211206000116X
[27] Tamai, Sheetlike plumes near a heated bottom plate at large Rayleigh number, J. Geophys. Res. 89 pp 727– (1984) · doi:10.1029/JC089iC01p00727
[28] Tresser, About some theorems by L. P. Shil’nikov, Ann. Inst. H. Poincaré 40 pp 441– (1984)
[29] S. E. Widnall Growth of turbulent spots in plane Poiseuille flow Turbulence and Chaotic Phenomena in Fluids T. Tatsumi North-Holland Amsterdam 93 98
[30] Wiggins, Appl. Math. Sci. 73 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.