×

Sur la monogénéité de l’anneau des entiers de certains corps de rayon. (On the monogenicity of the ring of integers of certain ray fields). (French) Zbl 0712.11063

The authors show that the main conjecture of monogenicity (see the previous review) is not true in general. In particular, let \(k={\mathbb{Q}}(\sqrt{-19})\), \(\omega =(1+\sqrt{-19})/2\). The ideal 7 splits in k/\({\mathbb{Q}}\) and \(P_ 7\), the ideal generated by \(q=1+\omega\), is one of the ideals dividing it. Then the ring of integers of the extension K of k of ray \(P_ 7\) does not possess a power basis over \({\mathbb{Z}}_ k\). To prove this the authors reduce the problem to showing the nonexistence of integer points of \({\mathbb{Z}}_ k\) on an elliptic curve and use the method of Baker and Ellison [W. J. Ellison, F. Ellison, J. Pesek, C. E. Stahl and D. S. Stall, J. Number Theory 4, 107-117 (1972; Zbl 0236.10010)] to resolve the problem. Alternatively, the authors show that they could have used the latest results of M. Mignotte and M. Waldschmidt [preprint, Université de Strasbourg, 1989] to obtain much smaller upper bounds for the magnitude of the solutions and reduce the calculations substantially.
Reviewer: R.Ph.Steiner

MSC:

11R20 Other abelian and metabelian extensions
11R33 Integral representations related to algebraic numbers; Galois module structure of rings of integers
11J86 Linear forms in logarithms; Baker’s method
11G05 Elliptic curves over global fields
11D25 Cubic and quartic Diophantine equations
11R37 Class field theory

Citations:

Zbl 0236.10010

References:

[1] - A. M. BERGÉ, J. MARTINET, M. OLIVIERThe computation of sextic fields with a quadratic subfield. A paraître · Zbl 0709.11056
[2] - J. COUGNARD, V.FLECKINGERModèle de Legendre d’une courbe elliptique à multiplication complexe et monogénéité d’anneaux d’ entiers. A paraître dans Acta Arithmetica
[3] - Ph. CASSOU-NOGUÈS, M. J. TAYLORElliptic functions and rings of integers. Progress in Mathematics no66. Birkhaüser · Zbl 0659.12002
[4] - W. J. ELLISONRecipes for solving diophantines problems by Baker’s method. Séminaire de Théorie des nombres de Bordeaux. 1970-71, exposéno 11
[5] - W. J. ELLISON, F. ELLISON, J. PESEK, E. STAHL, D. S. STALLThe diophantine equation y 2 +k=x 3. Journal of Number Theory 4, 107-117 (1972) · Zbl 0236.10010 · doi:10.1016/0022-314X(72)90058-3
[6] - M. N. GPRASLien entre le groupe des unités et Ja monogénéité des corps cubiques cycliques. Pub. Mathématiques de la Faculté des Sciences de Besançon; 1975-76
[7] - M.MIGNOTTE, M.WALDSCHMIDTLinear forms in two logartithms and Schneider’s method (III). Preprint Université de Strasbourg
[8] - A. M. ODLYZKOOn conductor and discriminants. In Algebraic Number Fields edited by A. Fröhlich. Addison Wesley 1977
[9] - R. SCHERTZKonstruktion von Potenzganzheitsbasen in Strahlklassenkörpern über imaginär quadratischen Zahlkörpern. A paraître
[10] - H. WADAOn the class number and the unit group of certain algebraic number fields. J. Fac. Sci. Universite Tokyo 13,(1966), p.201-209
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.