×

Heat flow out of regions in \({\mathbb{R}}^ m\). (English) Zbl 0661.35040

Let \(-\Delta_ D\) be the Dirichlet Laplacian for an open set D in \({\mathbb{R}}^ m\) and let \(p_ D(x,y;t)\) be the heat kernel associated to the parabolic operator \(-\Delta_ D+\partial /\partial t\). Define \(Z_ D(t)=\int_ Ddx p_ D(x,x;t)\) and \(Q_ D(t)=\int_ Ddx \int_ Ddy p_ D(x,y;t)\). Necessary and sufficient geometrical conditions on D are obtained for \(Z_ D(t)\) or \(Q_ D(t)\) to be finite for some \(t\geq 0.\)
It is conjectured that if \(0\leq s<\infty\) then the following are equivalent. (i) \(Q_ F(t)<\infty\) for all \(t\geq s\), (ii) \(Z_ F(t)<\infty\) for all \(t>s\). The conjecture holds for horn-shaped regions in \({\mathbb{R}}^ 2\) and it is not possible to sharpen it to the case where \(t=s.\)
Finally is is proved that if D is an open, bounded and connected set in \({\mathbb{R}}^ m\), \(m=2,3,\cdot \cdot \cdot\) with a smooth boundary \(\partial D\), then for all \(t\geq 0\) \[ Q_ D(t)-| D| +2t^{1/2}/\pi^{1/2}| \partial D| \quad \leq \quad Ct, \] where \(| D|\) is the volume of D, \(| \partial D|\) is the area of the boundary \(\partial D\) and C is a constant depending upon the smoothness of the boundary.
Reviewer: M.van den Berg

MSC:

35K20 Initial-boundary value problems for second-order parabolic equations
35A30 Geometric theory, characteristics, transformations in context of PDEs

References:

[1] Berg, M. van den: On the spectrum of the Dirichlet Laplacian for horn-shaped regions in ? n with infinite volume. J. Funct. Anal.58, 150-156 (1984) · Zbl 0559.35057 · doi:10.1016/0022-1236(84)90036-3
[2] Berg, M. van den: On the asymptotics of the heat equation and bounds on traces associated with the Dirichlet Laplacian. J. Funct. Anal.71, 279-293 (1987) · Zbl 0632.35016 · doi:10.1016/0022-1236(87)90005-X
[3] Berg, M. van den, Srisatkunarajah, S.: Heat flow and brownian motion for a region in ?2 with a polygonal boundary. (Preprint 1989) · Zbl 0682.60067
[4] Berg, M. van den: Gaussian bounds for the Dirichlet heat kernel. J. Funct. Anal. (to appear) · Zbl 0705.35052
[5] Carslaw, H.S., Jaeger, J.C.: Conduction of heat in solids. Oxford: Clarendon Press 1986 · Zbl 0584.73001
[6] Davies, E.B.: Some norm bounds and quadratic form inequalities for Schrödinger operators, II. J. Oper. Theory12, 177-196 (1984) · Zbl 0567.47006
[7] Davies, E.B.: Trace properties of the Dirichlet Laplacian. Math. Zeit.188, 245-251 (1985) · Zbl 0573.35072 · doi:10.1007/BF01304212
[8] Davies, E.B. One-parameter semigroups. New York: Academic Press 1980 · Zbl 0457.47030
[9] Davies, E.B.: Heat kernels and spectral theory. Cambridge: Cambridge University Press 1989 · Zbl 0699.35006
[10] Davies, E.B., Mandouvalos, N.: Heat kernel bounds on manifolds with cusps. J. Funct. Anal.75, 311-322 (1987) · Zbl 0629.53044 · doi:10.1016/0022-1236(87)90098-X
[11] Davies, E.B., Simon, B.: Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal.59, 335-395 (1984) · Zbl 0568.47034 · doi:10.1016/0022-1236(84)90076-4
[12] Edmunds, D.E., Evans, W.D.: Spectral theory and differential operators. Oxford: Clarendon Press 1987 · Zbl 0628.47017
[13] Fleckinger, J.: Asymptotic distribution of eigenvalues of elliptic operators on unbounded domains. In: Everitt, W.N., Sleeman, B.D. (eds) Ordinary and partial differential equations. Proceedings, Dundee 1980. (Lect. Notes Math., vol. 846, pp. 119-128) Berlin Heidelberg New York: Springer 1981 · Zbl 0455.35094
[14] Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series and products, New York: Academic Press 1980 · Zbl 0521.33001
[15] Maz’ja, V.G.: On (p, l)-capacity, imbedding theorems and the spectrum of a selfadjoint elliptic operator. Math. USSR, Izv.7, 357-387 (1973) · Zbl 0281.35074 · doi:10.1070/IM1973v007n02ABEH001942
[16] Rosen, J.: Sobolev inequalities for weight spaces and supercontractivity. Trans. Am. Math. Soc.222, 367-376 (1976) · Zbl 0344.46072 · doi:10.1090/S0002-9947-1976-0425601-7
[17] Rozenbljum, V.G.: The eigenvalues of the first boundary value problem in unbounded domains. Math. USSR, Sb.18, 235-248 (1972) · Zbl 0267.35063 · doi:10.1070/SM1972v018n02ABEH001766
[18] Rozenbljum, V.G.: The calculation of the spectral properties for the Laplace operator in domains of infinite measure. In: Smirnov, V.I. (ed.) Problems of mathematical analysis. No. 4: Integral and differential operators. Differential equations. Leningrad: Izdat. Leningrad Univ. 1973
[19] Simon, B.: Functional integration and quantum physics. New York: Academic Press 1979 · Zbl 0434.28013
[20] Simon, B.: Classical boundary, conditions as a technical tool in modern mathematical physics. Adv. Math.30, 377-385 (1978) · Zbl 0414.35069 · doi:10.1016/0001-8708(78)90040-3
[21] Simon, B.: Some quantum operators with discrete spectrum but classically continuous spectrum. Ann. Phys.146, 209-220 (1983) · Zbl 0547.35039 · doi:10.1016/0003-4916(83)90057-X
[22] Simon, B.: Non-classical eigenvalue asymptotics. J. Funct. Anal.53, 84-98 (1983) · Zbl 0529.35064 · doi:10.1016/0022-1236(83)90047-2
[23] Tamura, H.: The asymptotic distribution of eigenvalues of the Laplace operator in an unbounded domain. Nagoya Math. J.60, 7-33 (1976) · Zbl 0324.35071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.