×

On the radial cluster sets for holomorphic functions in the unit ball of \({\mathbb{C}}^ n\). (English) Zbl 0662.32005

Let \(\omega(r)\) be an increasing function defined for \(0\leq r<1\) such that \(\lim_{r\to 1}\omega(r)=\infty\). In a paper of J. P. Kahane and Y. Katznelson and in a paper of M. Ortel and W. Schneider, there is proved that for every measurable function \(\phi\) on the boundary of the unit disc D, there exists a holomorphic function \(f\) in \(D\) such that \(| f(z)| \leq \omega (| z|)\) for every \(z\in D\) and \(\lim_{r\to 1}f(r\zeta)=\phi (\zeta)\) almost everywhere on \(\partial D.\)
In this paper we prove that for every measurable function \(\phi\) on the boundary of the unit ball \(B\) of \({\mathbb{C}}^ n\) there exist an increasing sequence \(\{r_ j\}\), \(\lim_{j\to \infty} r_ j=1\) and a holomorphic function \(f\) in \(B\) such that \(| f(z)| \leq \omega (| z|)\) for every \(z\in B\) and \(\lim_{n\to \infty} f_{r_ n}(\zeta)=\phi (\zeta)\) almost everywhere on \(\partial B\). As a consequence we obtain that for every measurable function \(\phi\) on \(\partial B\) there exists a holomorphic function \(f\) in \(B\), \(f\in \cap_{1\leq p<\infty}L^ p(B)\) such that \(\phi\) (\(\zeta)\) belongs to the cluster set of \(f\) almost everywhere on \(\partial B\).
Reviewer: A.Iordan

MSC:

32A40 Boundary behavior of holomorphic functions of several complex variables
30E25 Boundary value problems in the complex plane

References:

[1] Aleksandrov, A.B.: The existence of inner functions in the ball. Mat. Sb.118, 147-163 (1982) · Zbl 0503.32001
[2] Bagemihl, F., Seidel, W.: Some boundary properties of analytic functions. Math. Z.61, 186-199 (1954) · Zbl 0058.06101 · doi:10.1007/BF01181342
[3] Barth, K., Schneider, W.: On the impossibility of extending the Riesz uniqueness theorem to function of slow growth. Ann. Acad. Sci. Fenn. Ser. AI, Math. (1968) · Zbl 0167.06203
[4] Hakim, M., Sibony, N.: Fonctions holomorphes bornées sur la boule unité de ? n . Invent. Math.67, 213-222 (1982) · doi:10.1007/BF01393814
[5] Hakim, M., Sibony, N.: Boundary properties of analytic functions in the ball of ? n . Math. Ann.276, 549-555 (1987) · Zbl 0622.32002 · doi:10.1007/BF01456984
[6] Kahane, J.-P., Katznelson, Y.: Sur le comportement radial des fonctions analytiques. C.R. Acad. Sci. Paris372, 718-719 (1971) · Zbl 0208.34202
[7] Løw, E.: A construction of inner functions on the unit ball of ? n . Invent. Math.67, 223-229 (1982) · Zbl 0528.32006 · doi:10.1007/BF01393815
[8] MacLane, G.R.: Holomorphic functions of arbitrarily slow growth, without radial limits. Mich. Math. J.9, 21-24 (1962) · Zbl 0115.29001 · doi:10.1307/mmj/1028998615
[9] Ortel, M., Schneider, W.: Radial limits of functions of slow growth in the unit disk. Math. Scand.56, 287-310 (1985) · Zbl 0599.30003
[10] Rudin, W.: Radial cluster sets of analytic functions. Bull. Am. Math. Soc.60, 545 (1954)
[11] Rudin, W.: Function theory in the unit ball of ? n . Berlin Heidelberg New York: Springer 1980 · Zbl 0495.32001
[12] Rudin, W.: New constructions of functions holomorphic in the unit ball of ? n . NSF-CBMS Regional Conference Series in Mathematics63 (1986) · Zbl 1187.32001
[13] Rudin, W.: Real and complex analysis. New York: McGraw-Hill 1966 · Zbl 0142.01701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.