×

The heat semigroup and integrability of Lie algebras. (English) Zbl 0662.22009

Let \(\mathfrak g\) be a finite-dimensional Lie algebra. A family \(V=\{V(x); x\in\mathfrak g\}\) of closed operators on a Banach space \(B\) is a representation of \(\mathfrak g\) if the common domain \(B_{\infty}(V)\) of arbitrary finite products of elements from \(V\) is norm dense and if \(V\) respects the Lie brackets. Such a representation is denoted by \((B_{\infty},{\mathfrak g},V)\). If \(x_1,\ldots,x_n\) is a basis for \(\mathfrak g\) then the Laplacian of the representation \((B_{\infty},\mathfrak g,V)\) is defined by \(\Delta =- \sum^n_1 V(x_j)^2\). The authors consider various conditions under which the Laplacian is closable and generates a continuous one parameter semigroup \(S\). They derive growth conditions of the type \(\| V(x_{i_1})\cdots V(x_{i_k})S_ta\| \leq c_k\| a\| /t^{k/2}\) from (*) \(\| V(x_i)S_ta\| \leq c\| a\| /t^{1/2}\).
These estimates are used to show that under certain circumstances (*) implies that a representation of \(\mathfrak g\) can be integrated to a continuous representation of the simply connected Lie group \(G\) with Lie algebra \(\mathfrak g\). Conversely it is shown that the differential representation \(d\pi\) of \(\mathfrak g\) associated to a continuous representation \(\pi\) of \(G\) satisfies (*). The proof uses heat equation methods and the observation that the estimates essentially only have to be proved for the regular representation on \(L^1(G)\).
The paper contains an example section which illustrates some aspects of the main results for \(sl(2,\mathbb{R})\) and the Heisenberg algebra. Finally the \(L^1\)-estimates for the heat kernel derived earlier in the paper are extended to weighted \(L^1\)-spaces.

MSC:

22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
47D03 Groups and semigroups of linear operators
17B15 Representations of Lie algebras and Lie superalgebras, analytic theory
Full Text: DOI

References:

[1] Arima, R., On general boundary value problems for parabolic equations, J. Math. Kyoto Univ., 4, 207-243 (1964) · Zbl 0143.13902
[2] Bargmann, V., Irreducible unitary representations of the Lorentz group, Ann. Math., 48, 568-640 (1947) · Zbl 0045.38801
[3] Bony, J. M., Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble), 19, 277-304 (1969) · Zbl 0176.09703
[4] Bratteli, O.; Robinson, D. W., Operator Algebras and Quantum Statistical Mechanics I (1987), Springer-Verlag: Springer-Verlag Heidelberg · Zbl 0905.46046
[5] De Leeuw, K.; Mirkil, H., A priori estimates for differential operators in \(L_∞\)-norm, Illinois J. Math., 8, 112-124 (1964) · Zbl 0131.33202
[6] Dynkin, E. B., (Markov Processes, Vol. II (1965), Springer-Verlag: Springer-Verlag New York/Berlin) · Zbl 0132.37901
[7] Folland, G. B.; Stein, E. M., Hardy Spaces on Homogeneous Groups (1982), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0508.42025
[8] Gårding, L., Vecteurs analytiques dans les représentations des groupes de Lie, Bull. Soc. Math. France, 88, 73-93 (1960) · Zbl 0095.10402
[9] Gaveau, B., Principe de moindre action, propagation de la chaleur et estimes sous elliptiques sur certains groupes nilpotents, Acta Math., 139, 95-153 (1977) · Zbl 0366.22010
[10] Glimm, J.; Jaffe, A., Quantum Physics (1981), Springer-Verlag: Springer-Verlag New York · Zbl 0461.46051
[11] Goodman, F. M.; Jørgensen, P. E.T., Lie algebras of unbounded derivations, J. Funct. Anal., 52, 369-384 (1983) · Zbl 0515.46059
[12] Goodman, R. W., Analytic and entire vectors for representations of Lie groups, Trans. Amer. Math. Soc., 143, 55-76 (1969) · Zbl 0189.14102
[13] Goodman, R. W., Analytic domination by fractional powers of a positive operator, J. Funct. Anal., 3, 246-264 (1969) · Zbl 0172.40605
[14] Goodman, R. W., One-parameter groups generated by operators in an enveloping algebra, J. Funct. Anal., 6, 218-236 (1970) · Zbl 0203.44202
[15] Goodman, R. W., Nilpotent Lie Groups, (Lecture Notes in Mathematics, Vol. 562 (1976), Springer-Verlag: Springer-Verlag Heidelberg) · Zbl 0347.22001
[16] Hörmander, L., Hypoelliptic second order differential equations, Acta Math., 119, 147-171 (1968) · Zbl 0156.10701
[17] Hörmander, L., The Analysis of Linear Partial Differential Operators I (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0521.35001
[18] Hulanicki, A., The distribution of energy in the Brownian motion in Gaussian fields and analytic hypoellipticity of certain subelliptic operators on the Heisenberg group, Studia Math., 56, 165-173 (1976) · Zbl 0336.22007
[19] John, F., Partial Differential Equations (1985), Springer-Verlag: Springer-Verlag New York
[20] Jørgensen, P. E.T., Representations of differential operators on a Lie group, J. Funct. Anal., 80, 105-135 (1975) · Zbl 0311.43003
[21] Jørgensen, P. E.T.; Klink, W. H., Spectral representation for the sublaplacian on the Heisengerg group (1986), preprint
[22] Jørgensen, P. E.T.; Moore, R. T., Operator Commutation Relations (1984), Reidel: Reidel Boston/Dordrecht · Zbl 0535.47020
[23] Langlands, R. P., Semigroups and Representations of Lie Groups, (Thesis (1960), Yale University) · Zbl 0910.11045
[24] Langlands, R. P., Some holomorphic semigroups, (Proc. Nat. Acad. Sci. U.S.A., 46 (1960)), 361-363 · Zbl 0095.10501
[25] Moore, R. T., Generation of equi-continuous semigroups by hermitian and sectorial operators, II, Bull. Amer. Math. Soc., 77, 368-373 (1971) · Zbl 0212.16104
[26] Nelson, E., Analytic vectors, Ann. of Math., 70, 572-615 (1959) · Zbl 0091.10704
[27] Nelson, E.; Stinespring, W. F., Representation of elliptic operators in an enveloping algebra, Amer. J. Math., 81, 547-560 (1959) · Zbl 0092.32103
[28] Ornstein, D., A non-inequality for differential operators in \(L_1\)-norm, Arch. Rational Mech. Anal., 11, 40-49 (1962) · Zbl 0106.29602
[29] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0516.47023
[30] Poulsen, N. S., On \(C_∞\)-vectors and intertwining bilinear forms for representations of Lie groups, J. Funct. Anal., 9, 87-120 (1972) · Zbl 0237.22013
[31] Robinson, D. W., The differential and integral structure of Lie groups, (Canberra preprint (1986)) · Zbl 0077.24402
[32] Simon, B., Functional Integration and Quantum Physics (1979), Academic Press: Academic Press New York · Zbl 0434.28013
[33] Stein, E. M., Topics in Harmonic Analysis (1970), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0193.10502
[34] Yosida, K., Functional Analysis (1968), Springer-Verlag: Springer-Verlag Berlin · Zbl 0152.32102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.