×

Solutions rationnelles de certaines équations fonctionnelles. (Rational solutions of certain functional equations). (French) Zbl 0661.10018

The core of this note is a study of those transformations \[ y\quad \mapsto \quad U(y)(x)=\sum^{s}_{i=1}R_ i(x)y(\frac{a_ ix}{1+b_ ix}) \] with the \(R_ i\) rational functions, for which the rationality of the function U (say, that it be an element of \({\mathbb{Q}}(x))\) and some suitable a priori restriction on y (say, that it have integer coefficients) entails the rationality of the series y. The author shows, in effect, that it suffices for the complex constants \(a_ i\) and \(b_ i\) to be such that the intersection of the subsets of \({\mathbb{C}}\) containing the origin and stable under all the maps \(x\mapsto a_ ix+b_ i\) has transfinite diameter strictly smaller than 1; a special case is if for all i one has \(| a_ i| +| b_ i| <1\).
Though somewhat disguised, the underlying problem here is a generalization of the matter of the Hadamard quotient of rational functions: if both \(\sum c_ hX^ h\) and \(\sum b_ hX^ h\) represent rational functions and the series \(\sum (c_ h/b_ h)X^ h\) could ‘possibly’ represent a rational function (for example, if all the quotients \(a_ h=(c_ h/b_ h)\) are rational integers) then \(\sum a_ hX^ h\) does indeed represent a rational function. This matter is now completely settled in the affirmative; see the reviewer’s paper [C.R. Acad. Sci., Paris, Sér. I 306, No.3, 97-102 (1988; Zbl 0635.10007)]. It would be interesting to understand this result in a wider setting. An appropriate viewpoint is hinted at in the present paper; the point of difficulty remaining being the boundary situation when the transfinite diameter is 1. It may be that R. S. Rumely’s very general “Capacity theory on algebraic curves” (to appear in the Springer Lecture Notes) has a rôle to play in this context.

MSC:

11B37 Recurrences
39B05 General theory of functional equations and inequalities
13J05 Power series rings

Citations:

Zbl 0635.10007

References:

[1] Amice, Y.,Les nombres p-adiques. (Collection SUP, Math. No. 14). Presses universitaires de France, Paris, 1975. · Zbl 0313.12104
[2] Benzaghou, B.,Algebres de Hadamard. Bull. Soc. Math. France28 (1970), 209–252. · Zbl 0206.33203
[3] Hille, E.,Analytic function theory. Vol. II, Ginn and Co., New York-Toronto, 1962. · Zbl 0102.29401
[4] Loxton, J. H. andVan der Poorten, A. J.,On algebraic functions satisfying a class of functional equations. Aequationes Math.14 (1976), 413–420. · Zbl 0339.12002 · doi:10.1007/BF01835990
[5] Loxton, J. H. andVan der Poorten, A. J.,Arithmetic properties of certain functions in several variables. J. Number Theory9 (1977), 87–106. · Zbl 0339.10026 · doi:10.1016/0022-314X(77)90053-1
[6] Mahler, K.,Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen. Math. Ann.101 (1929) 342–366. · JFM 55.0115.01 · doi:10.1007/BF01454845
[7] Mahler, K.,Über das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen. Math. Ann.103 (1930), 573–587. · JFM 56.0185.03 · doi:10.1007/BF01455711
[8] Mahler, K.,Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen. Math. Z.32 (1930), 545–585. · JFM 56.0186.01 · doi:10.1007/BF01194652
[9] Pourchet, Y.,Solution du problème arithmétique du quotient de Hadamard de deux fonctions rationnelles. C.R. Acad. Sci. Paris Sér A–B288 (1979), 1055–1057. · Zbl 0421.13005
[10] Rumely, R. S.,Notes on Van der Poorten’s proof of the Hadamard quotient theorem, 1 and II. Unpublished notes. · Zbl 0661.10017
[11] Van der Poorten, A. J.,Hadamard Operations on rational functions. (Groupe d’étude d’analyse ultramétrique 1982–83, Vol. 10, no. 1, exposé no. 4.). Inst. Henri Poincaré, Paris, 1984.
[12] Van der Poorten, A. J.,p-adic methods in the study of Taylor coefficients of rational functions. Bull. Austral. Math. Soc.19 (1984), 109–117. · Zbl 0519.10009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.