×

Representations of sl(n,\({\mathbb{C}})\) and the Toda lattice. (English) Zbl 0645.58024

This work builds on that of Adler and Moerbeke and shows that the linearization procedure for the flows of the periodic Toda lattice is independent of the representation of sl(n,\({\mathbb{C}})\). It also generalizes a key result in the work of van Moerbeke and Mumford and makes it applicable to an arbitrary Lax pair. The periodic Toda lattice is treated in detail. The paper ends with a very detailed discussion of two curves associated to sl(4). It would be very interesting to extend these results to arbitrary semi-simple Lie algebras.
Reviewer: T.Ratiu

MSC:

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
70H20 Hamilton-Jacobi equations in mechanics
35Q99 Partial differential equations of mathematical physics and other areas of application
Full Text: DOI

References:

[1] M. Adler, On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg-de Vries type equations , Invent. Math. 50 (1978/79), no. 3, 219-248. · Zbl 0393.35058 · doi:10.1007/BF01410079
[2] M. Adler and P. van Moerbeke, Completely integrable systems, Euclidean Lie algebras, and curves , Adv. in Math. 38 (1980), no. 3, 267-317. · Zbl 0455.58017 · doi:10.1016/0001-8708(80)90007-9
[3] M. Adler and P. van Moerbeke, Linearization of Hamiltonian systems, Jacobi varieties and representation theory , Adv. in Math. 38 (1980), no. 3, 318-379. · Zbl 0455.58010 · doi:10.1016/0001-8708(80)90008-0
[4] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I , Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. · Zbl 0559.14017
[5] W. S. Burnside and A. W. Panton, The Theory of Equations , 7th ed., Longmans, Green and Company, London, 1912, (rpt. Dover, New York, 1960). · JFM 46.0143.03
[6] J. L. Coolidge, Algebraic Plane Curves , Oxford University Press, Oxford, 1931. · JFM 57.0820.06
[7] H. M. Farkas and I. Kra, Riemann surfaces , Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York, 1980. · Zbl 0475.30001
[8] H. Flaschka, The Toda lattice. I. Existence of integrals , Phys. Rev. B (3) 9 (1974), 1924-1925. · Zbl 0942.37504 · doi:10.1103/PhysRevB.9.1924
[9] P. A. Griffiths, Linearizing flows and a cohomological interpretation of Lax equations , Amer. J. Math. 107 (1985), no. 6, 1445-1484 (1986). JSTOR: · Zbl 0585.58028 · doi:10.2307/2374412
[10] P. Griffiths and J. Harris, Principles of algebraic geometry , Wiley-Interscience [John Wiley & Sons], New York, 1978. · Zbl 0408.14001
[11] J. E. Humphreys, Linear algebraic groups , Springer-Verlag, New York, 1975. · Zbl 0325.20039
[12] B. Kostant, The solution to a generalized Toda lattice and representation theory , Adv. in Math. 34 (1979), no. 3, 195-338. · Zbl 0433.22008 · doi:10.1016/0001-8708(79)90057-4
[13] A. McDaniel, Lie algebra representations and the Toda lattice , dissertation, Brandeis University, 1985.
[14] J. K. Percus, Combinatorial methods , Notes recorded by Ora Engelberg Percus, Courant Institute of Mathematical Sciences New York University, New York, 1969. · Zbl 0227.05003
[15] E. Previato, Hyperelliptic quasiperiodic and soliton solutions of the nonlinear Schrödinger equation , Duke Math. J. 52 (1985), no. 2, 329-377. · Zbl 0578.35086 · doi:10.1215/S0012-7094-85-05218-4
[16] C. L. Siegel, Topics in Complex Function Theory , vol. 3, John Wiley, New York, 1971. · Zbl 0211.10501
[17] W. W. Symes, Systems of Toda type, inverse spectral problems, and representation theory , Invent. Math. 59 (1980), no. 1, 13-51. · Zbl 0474.58009 · doi:10.1007/BF01390312
[18] C. Tomei, The topology of isospectral manifolds of tridiagonal matrices , Duke Math. J. 51 (1984), no. 4, 981-996. · Zbl 0558.57006 · doi:10.1215/S0012-7094-84-05144-5
[19] P. van Moerbeke, The spectrum of Jacobi matrices , Invent. Math. 37 (1976), no. 1, 45-81. · Zbl 0361.15010 · doi:10.1007/BF01418827
[20] P. van Moerbeke and D. Mumford, The spectrum of difference operators and algebraic curves , Acta Math. 143 (1979), no. 1-2, 93-154. · Zbl 0502.58032 · doi:10.1007/BF02392090
[21] Z. X. Wan, Lie algebras , Pergamon Press, Oxford, 1975. · Zbl 0343.17003
[22] A. Weil, Courbes algébriques et variétés abéliennes , Hermann, Paris, 1971. · Zbl 0208.49202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.