×

Numerical solution of three-dimensional magnetic differential equations. (English) Zbl 0652.76070

A computer code is described that solves differential equations of the form \(B\cdot \nabla f=h\) for a single-valued solution f, given a toroidal three-dimensional divergence-free field B and a single-valued function h. The code uses a new alorithm that Fourier decomposes a given function in a set of flux coordinates in which the field lines are straight. The algorithm automatically adjusts the required integration lengths to compensate for proximity to low order rational surfaces. Applying this algorithm to the Cartesian coordinates defines a transformation to magnetic coordinates, in which the magnetic differential equation can be accurately solved. Our method is illustrated by calculating the Pfirsch- Schlüter currents for a stellarator.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
65Z05 Applications to the sciences
82D10 Statistical mechanics of plasmas

Software:

nag; NAG

References:

[1] Kruskal, M. D.; Kulsrud, R. M., Phys. Fluids, 1, 253 (1958), For a more general discussion of magnetic differential equations see Ref. [2]
[2] Solovev, L. S.; Shafranov, V. D., (Leontovich, M. A., Reviews of Plasma Physics, Vol. V. (1970), Consultants Bureau: Consultants Bureau New York)
[3] Reiman, A.; Greenside, H., Comput. Phys. Commun., 43, 157 (1986)
[4] Boozer, A. H., Phys. Fluids, 25, 520 (1982) · Zbl 0501.76121
[5] Kuo-Petravic, G.; Boozer, A. H.; Rome, J. A.; Fowler, R. H., J. Comput. Phys., 51, 261 (1983) · Zbl 0513.76124
[6] Bauer, F.; Betancourt, O.; Garabedian, P., Magnetohydrodynamic Equilibrium and Stability of Stellarators (1984), Springer-Verlag: Springer-Verlag New York · Zbl 0545.76135
[7] Hirshman, S. P.; Lee, D. K., Comput. Phys. Commun., 39, 161 (1986)
[8] Schwenn, U., Comput. Phys. Commun., 31, 167 (1984)
[9] Hamada, S., Nucl. Fusion, 1, 23 (1962)
[10] Greene, J. M.; Johnson, J. L., Phys. Fluids, 5, 510 (1962) · Zbl 0124.20603
[11] Gourdon, C.; Lemarie, G.; Roche, F.; Soulé, J. L., Rep. EUR-CEA-FC 449 (1968), (unpublished)
[12] (NAG Fortran Library Manual Mark 9 (1982), Numerical Algorithms Group: Numerical Algorithms Group Mayfield House, U.K)
[13] Deboor, C., A Practical Guide to Splines (1978), Springer-Verlag: Springer-Verlag New York · Zbl 0406.41003
[14] Buneman, O., SIAM J. Sci. Star. Comput., 7, 2, 624-638 (1986) · Zbl 0617.65144
[15] Harris, F. J., (Proc. IEEE, 66 (1978)), 51
[16] Gautschi, W., (Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions (1964), National Bureau of Standards: National Bureau of Standards Washington, DC), 295 · Zbl 0171.38503
[17] Lyon, J. F.; Carreras, B. A.; Chipley, K. K.; Cole, M. J.; Harris, J. H.; Jernigan, T. C.; Johnson, R. L.; Lynch, V. E.; Nelson, B. E.; Rome, J. A.; Sheffield, J.; Thompson, P. B., Fusion Technol., 10, 179 (1986)
[18] Greenside, H.; Reiman, A., (Sherwood Conference. Sherwood Conference, San Diego (April, 1987)), (unpublished)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.