×

Universal amplitude ratios in the two-dimensional \(q\)-state Potts model and percolation from quantum field theory. (English) Zbl 0949.82008

Summary: We consider the scaling limit of the two-dimensional \(q\)-state Potts model for \(q\leqslant 4\). We use the exact scattering theory proposed by Chim and Zamolodchikov to determine the one- and two-kink form factors of the energy, order and disorder operators in the model. Correlation functions and universal combinations of critical amplitudes are then computed within the two-kink approximation in the form factor approach. Very good agreement is found whenever comparison with exact results is possible. We finally consider the limit \(q\rightarrow 1\) which is related to the isotropic percolation problem. Although this case presents a serious technical difficulty, we predict a value close to 74 for the ratio of the mean cluster size amplitudes above and below the percolation threshold. Previous estimates for this quantity range from 14 to 220.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B23 Exactly solvable models; Bethe ansatz
81T25 Quantum field theory on lattices
82B43 Percolation

References:

[1] Zamolodchikov, A. B.; Zamolodchikov, Al. B., Ann. Phys., 120, 253 (1979)
[2] Zamolodchikov, A. B., Int. J. Mod. Phys. A, 3, 743 (1988)
[3] Mussardo, G., Phys. Rep., 218, 215 (1992), and references therein
[4] Baxter, R. J., Exactly Solved Models of Statistical Mechanics (1982), Academic Press: Academic Press London · Zbl 0538.60093
[5] Warnaar, S. O.; Nienhuis, B.; Seaton, K. A., Int. J. Mod. Phys. B, 7, 3727 (1993)
[6] Belavin, A. A.; Polyakov, A. M.; Zamolodchikov, A. B., Nucl. Phys. B, 241, 333 (1984) · Zbl 0661.17013
[7] (Itzykson, C.; Saleur, H.; Zuber, J. B., Conformal Invariance and Applications to Statistical Mechanics (1988), World Scientific: World Scientific Singapore), and references therein · Zbl 0723.00044
[8] Privman, V.; Hohenberg, P. C.; Aharony, A., Universal Critical-Point Amplitude Relations, (Domb, C.; Lebowitz, J. L., Phase Transitions and Critical Phenomena, Vol. 14 (1991), Academic Press: Academic Press New York)
[9] Karowski, M.; Weisz, P., Nucl. Phys. B, 139, 445 (1978)
[10] Smirnov, F. A., Form Factors in Completely Integrable Models of Quantum Field Theory (1992), World Scientific: World Scientific Singapore, and references therein · Zbl 0788.46077
[11] Delfino, G.; Mussardo, G., Nucl. Phys. B, 455, 724 (1995) · Zbl 0925.82042
[12] Delfino, G.; Simonetti, P., Phys. Lett. B, 383, 450 (1996)
[13] Delfino, G.; Simonetti, P.; Cardy, J. L., Phys. Lett. B, 387, 327 (1996)
[14] Berg, B.; Karowski, M.; Weisz, P., Phys. Rev. D, 19, 2477 (1979)
[15] Zamolodchikov, Al. B., Nucl. Phys. B, 348, 619 (1991)
[16] Yurov, V. P.; Zamolodchikov, Al. B., Int. J. Mod. Phys. A, 6, 3419 (1991)
[17] Cardy, J. L.; Mussardo, G., Nucl. Phys. B, 410, 451 (1993), [FS] · Zbl 0990.82526
[18] Chim, L.; Zamolodchikov, A. B., Int. J. Mod. Phys. A, 7, 5317 (1992) · Zbl 0972.81626
[19] Potts, R. B., (Proc. Cambridge Phil. Soc., 48 (1952)), 106 · Zbl 0048.45601
[20] Wu, F. Y., Rev. Mod. Phys., 54, 235 (1982)
[21] Baxter, R. J.; Kelland, S. B.; Wu, F. Y., J. Phys. A, 9, 397 (1976) · Zbl 0321.05140
[22] Nienhuis, B., J. Stat. Phys., 34, 781 (1984)
[23] Dotsenko, Vl. S.; Fateev, V. A., Nucl. Phys. B, 240, 312 (1984)
[24] Smirnov, F. A., Int. J. Mod. Phys. A, 6, 1407 (1991)
[25] Smirnov, F. A., Phys. Lett. B, 275, 109 (1990)
[26] P. Dorey and A.J. Pocklington, unpublished.; P. Dorey and A.J. Pocklington, unpublished.
[27] Coleman, S.; Thun, H. J., Comm. Math. Phys., 61, 31 (1978)
[28] Fateev, V. A., Phys. Lett. B, 324, 45 (1994)
[29] Delfino, G.; Mussardo, G., Nucl. Phys. B, 516, 675 (1998) · Zbl 0921.35148
[30] Zamolodchikov, A. B., Int. J. Mod. Phys. A, 3, 743 (1988)
[31] Kirillov, A. N.; Smirnov, F. A., Kiev preprint ITF-88-73R (1988), in russian
[32] Cardy, J. L., Phys. Rev. Lett., 60, 2709 (1988)
[33] McCoy, B. M.; Wu, T. T., The Two-dimensional Ising Model (1982), Harvard Univ. Press, and references therein
[34] Wu, T. T.; McCoy, B. M.; Tracy, C. A.; Barouch, E., Phys. Rev. B, 13, 316 (1976)
[35] Delfino, G., Phys. Lett. B, 419, 291 (1998)
[36] Stauffer, D.; Aharony, A., Introduction to Percolation Theory (1992), Taylor & Francis: Taylor & Francis London, and references therein
[37] Kasteleyn, P. W.; Fortuin, E. M., Physica, 57, 536 (1972)
[38] Domb, C.; Pearce, C. J., J. Phys. A, 9, L137 (1976)
[39] Aharony, A., Phys. Rev B, 22, 400 (1980)
[40] Corsten, M.; Jan, N.; Jerrard, R., Physica A, 156, 781 (1989)
[41] Stauffer, D., Phys. Rep., 54, 1 (1979)
[42] Zamolodchikov, Al. B., Int. J. Mod. Phys. A, 10, 1125 (1995)
[43] Lukyanov, S.; Zamolodchikov, A. B., Nucl. Phys. B, 493, 571 (1997) · Zbl 0909.58064
[44] Fateev, V. A.; Lukyanov, S.; Zamolodchikov, A. B.; Zamolodchikov, Al. B., Phys. Lett. B, 406, 83 (1997), hep-th/9709034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.