×

The geometry of tensor calculus. I. (English) Zbl 0738.18005

The goal of this paper is to formalize the use of certain diagrams for a wide variety of situations in pure and applied mathematics. The main examples are the Feynman diagrams. Other examples are given by circuit diagrams, networks, Petri nets, flow charts, and planar diagrams of knots or links.
R. Penrose was the first to use the graphical notation for calculations with tensors. It is now currently used by theoretical physicists.
The paper consists of four chapters. In the first one, the authors recall the basic algebraic structure, namely that of a tensor category (also called “monoidal category”) which is simply a category with an associative (up to coherent isomorphism) tensor product operation. The authors introduce the concept of a graph appropriate for both this paper and the next one. They define the concept of a valuation which labels the nodes of a graph with arrows from a tensor category \(\mathcal V\) and labels the edges with objects of \(\mathcal V\). A planar graph \(\Gamma\) equipped with a valuation \(v\) is called a plane diagram in \(\mathcal V\). Then the authors define an arrow \(v(\Gamma)\) in \(\mathcal V\), called the value of the diagram. The main result of this chapter is that the value is invariant under continuous deformation of plane diagrams. In Section 4, the authors check that free tensor categories can be described in terms of isotopy classes of plane diagrams.
In the second chapter the authors consider the case of symmetric tensor categories for which the tensor product is equipped with an extra structure of symmetry. In this situation they show that the value \(v(\Gamma)\) of a diagram can be defined even when \(\Gamma\) is abstract (no planarity is needed). In the second section of this chapter the authors construct free symmetric tensor categories using isomorphism classes of abstract diagrams.
In Chapter 3 the authors consider the case of braided tensor categories [the authors, Braided monoidal categories, Macquarie Math. Reports (November, 1986)]. In this situation the diagram \(\Gamma\) is embedded in 3-space. They prove that the value of a diagram is invariant under deformation. Then they describe free braided tensor categories using isotopy classes of embedded diagrams in 3-space.
In Chapter 4 the authors introduce the concept of balanced tensor category. In this case the embedded graphs \(\Gamma\) are framed, or made of ribbons. Again they prove the invariance of the value of a ribbon diagram under continuous deformation and construct the free balanced tensor category from isotopy classes of ribbon diagrams.
The authors announce that their second paper will deal with tensor categories in which the objects are duals.
Reviewer: I.Pop (Iaşi)

MSC:

18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
57M15 Relations of low-dimensional topology with graph theory
18A10 Graphs, diagram schemes, precategories
Full Text: DOI

References:

[1] Aitchison, I., String diagrams for non-abelian cocycle conditions, (talk at Louvain-la-Neuve Conference. talk at Louvain-la-Neuve Conference, Belgium (August 1987))
[2] Artin, E., Theory of braids, Ann. of Math., 48, 101-126 (1947) · Zbl 0030.17703
[3] J. Beck; J. Beck
[4] Brauer, R., On algebras which are connected with the semi-simple continuous groups, Ann. of Math., 38, 857-872 (1937) · JFM 63.0873.02
[5] Cartier, P.; Foata, D., Problèmes combinatoires de commutation et réarrangements, (Lecture Notes in Mathematics, Vol. 85 (1969), Springer-Verlag: Springer-Verlag Berlin/New York) · Zbl 0186.30101
[6] Deligne, P.; Milne, J. S., Tannakian categories, Hodge Cocycles, Motives and Shimura Varieties, (Lecture Notes in Mathematics, Vol. 900 (1982), Springer-Verlag: Springer-Verlag Berlin/New York) · Zbl 0465.00010
[7] Drinfel’d, V. G., Quantum groups, (Proceedings of the International Congress of Mathematicians at Berkeley. Proceedings of the International Congress of Mathematicians at Berkeley, California, USA (1986)), 798-820 · Zbl 0641.16006
[8] Dubuc, E., Kan Extensions in Enriched Category Theory, (Lecture Notes in Mathematics, Vol. 145 (1970), Springer-Verlag: Springer-Verlag Berlin/New York) · Zbl 0228.18002
[9] Eilenberg, S.; Kelly, G. M., A generalization of the functiorial calculus, J. Algebra, 3, 366-375 (1966) · Zbl 0146.02501
[10] Eilenberg, S.; Kelly, G. M., Closed categories, (Proc. Conf. Categorical Algebra at La Jolla 1965 (1966), Springer-Verlag: Springer-Verlag Berlin/New York), 421-562 · Zbl 0192.10604
[11] P. Freyd and D. Yetter; P. Freyd and D. Yetter · Zbl 0679.57003
[12] Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, W.; Millet, K.; Ocneanu, A., A new polynomial invariant of knots and links, Bull. Amer. Math. Soc., 12, 183-312 (1985) · Zbl 0572.57002
[13] Girard, J. Y., Linear logic, Theoret. Comput. Sci., 50 (1987) · Zbl 0647.03016
[14] Huet, G., Confluent reductions: Abstract properties and applications to term rewriting systems, J. Assoc. Comput. Mach., 27, 797-821 (1990) · Zbl 0458.68007
[15] Jones, V., A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc., 12, 103-111 (1985) · Zbl 0564.57006
[16] Joyal, A., Knot polynomials revisited, (talk at Louvain-la-neuve Category Conference. talk at Louvain-la-neuve Category Conference, Belgium (August, 1987))
[17] Joyal, A.; Street, R., Braided Monoidal Categories, Macquarie Mathematics Reports 850067 (December 1985)
[18] Joyal, A.; Street, R., Braided Monoidal Categories, Macquarie Mathematics Reports 860081 (November, 1986)
[19] Abstracts of the Sydney Category Seminar (1988)
[20] Kelly, G. M., On MacLane’s conditions for coherence of natural associativities, commutativities, etc., J. Algebra, 1, 397-402 (1964) · Zbl 0246.18008
[21] Kelly, G. M., Tensor products in categories, J. Algebra, 2, 15-37 (1965) · Zbl 0135.02102
[22] Kelly, G. M., Many variable functorial calculus, I, (Coherence in Categories. Coherence in Categories, Lecture Notes in Mathematics, Vol. 281 (1972), Springer-Verlag: Springer-Verlag Berlin/New York), 66-105 · Zbl 0243.18015
[23] Kelly, G. M., An abstract approach to coherence, (Coherence in Categories. Coherence in Categories, Lecture Notes in Mathematics, Vol. 281 (1972), Springer-Verlag: Springer-Verlag Berlin/New York), 106-147 · Zbl 0243.18016
[24] Kelly, G. M.; Laplaza, M. L., Coherence for compact closed categories, J. Pure Appl. Algebra, 19, 192-213 (1980) · Zbl 0447.18005
[25] Kelly, G. M.; Street, R. H., Review of the elements of 2-categories, (Category Seminar Sydney 1972/73. Category Seminar Sydney 1972/73, Lecture Notes in Mathematics, Vol. 420 (1974), Springer-Verlag: Springer-Verlag Berlin/New York), 75-103 · Zbl 0334.18016
[26] MacLane, S., Natural associativity and commutativity, Rice Univ. Stud., 49, 28-46 (1963) · Zbl 0244.18008
[27] MacLane, S., Categories for the Working Mathematician, (Graduate Texts in Mathematics, Vol. 5 (1971), Springer-Verlag: Springer-Verlag Berlin/New York) · Zbl 0705.18001
[28] MacLane, S.; Paré, R., Coherence for bicategories and indexed categories, J. Pure Appl. Algebra, 37, 59-80 (1985) · Zbl 0567.18003
[29] Manin, Yu, Quantum groups (June 1988), five lectures at Université de Montréal · Zbl 0724.17006
[30] Penrose, R., Applications of negative dimensional tensors, (Welsh, D. J.A, Combinatorial Mathematics and its Applications (1971), Academic Press: Academic Press New York), 221-244 · Zbl 0216.43502
[31] Penrose, R.; Rindler, R., (Spinors and Space-Time, Vol. 1 (1984), Cambridge University Press: Cambridge University Press Cambridge, U. K), 423-434 · Zbl 0538.53024
[32] A. J. PowerJ. Algebra; A. J. PowerJ. Algebra · Zbl 0698.18005
[33] (Knotentheory (1932), Springer-Verlag: Springer-Verlag Berlin/New York), translated from · Zbl 0519.57004
[34] N. Yu. Reshetikhin and V. G. Turaev; N. Yu. Reshetikhin and V. G. Turaev · Zbl 0768.57003
[35] Rivano, N. Saavedra, Catégories Tannakiennes, (Lecture Notes in Mathematics, Vol. 265 (1972), Springer-Verlag: Springer-Verlag Berlin/New York) · Zbl 0241.14008
[36] Chee, Shum Mei, Tortile Tensor Categories, (Ph.D. Thesis (November, 1989), Macquarie University) · Zbl 0803.18004
[37] Street, R. H., Limits indexed by category-valued 2-functors, J. Pure Appl. Algebra, 8, 149-181 (1976) · Zbl 0335.18005
[38] Street, R. H., The algebra of oriented simplexes, J. Pure Appl. Algebra, 43, 235-242 (1986) · Zbl 0612.18004
[39] Turaev, V. G., The Yang-Baxter equations and invariants of links, LOMI Preprints E 3-87 (26 January 1987), Leningrad
[40] Turaev, V. G., Polynomial invariants of tangles, (Isle of Thorns Low Dimensional Topology Meeting (July 1987)) · Zbl 0673.57005
[41] Viennot, G. X., Heaps of pieces, I. Basic definitions and combinatorial lemmas, (Combinatoire énumerative. Combinatoire énumerative, Lecture Notes in Mathematics, Vol. 1234 (1986), Springer-Verlag: Springer-Verlag Berlin/New York), 321-351 · Zbl 0618.05008
[42] Yetter, D., Markov algebras, Contemp. Math., 78, 705-730 (1988) · Zbl 0665.57004
[43] \( \textsc{D. Yetter}S^3\)Adv. in Math.; \( \textsc{D. Yetter}S^3\)Adv. in Math. · Zbl 0679.57002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.