×

The second Brauer-Thrall conjecture for isolated singularities of excellent hypersurfaces. (English) Zbl 0743.13014

Let \(R\) be an excellent local Henselian \(k\)-algebra (with \(k\) an algebraically closed field of arbitrary characteristic) whose completion \(R^{}\) is isomorphic to \(k[[x_ 0,\ldots,x_ n]]/(f)\), where \(f\) has an isolated singularity at the origin. The aim of this paper is to extend and to give new proofs of certain results of E. Dieterich [Comment. Math. Helv. 62, 654-676 (1987; Zbl 0654.14002) and in Singularities, representation of algebras, and vector bundles, Proc. Symp., Lambrecht/Pfalz 1985, Lect. Notes Math. 1273, 244-264 (1987; Zbl 0632.14004)]. As a sample we mention the following.
Theorem. If \(R\) is not of finite representation type, there is a strictly increasing sequence \(\{n_ i\}_{i\geq 1}\) of positive integers such that for all \(i\) there are infinitely many isomorphism classes of indecomposable maximal Cohen-Macaulay \(R\)-modules of rank \(n_ i\). Dieterich proved this result in the case \(R=k[[x_ 0,\ldots,x_ n]]/(f)\) and \(\hbox{char}(k)\neq 2\). The authors are able to prove it in arbitrary characteristic and for \(R\) Henselian as above.

MSC:

13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
13J15 Henselian rings
14J17 Singularities of surfaces or higher-dimensional varieties

Software:

classifyCeq.lib

References:

[1] [Au 1] Auslander, M., Functors and morphisms determined by objects, Proc. Conf. Representation Theory, Philadelphia, 1976, New York, Basel 1978, 1–244
[2] [Au 2] Auslander, M., Isolated singularities and existence of almost split sequences, Proc. ICRA IV, Springer Lecture Notes in Mathematics No 1178 (1986), 194–241
[3] [BGS] Buchweitz, R.O., Greuel, G.M., Schreyer, F.O., Cohen–Macaulay modules on hypersurface singularities II, Inventiones math. 88 (1987), 165–183 · Zbl 0617.14034 · doi:10.1007/BF01405096
[4] [Di 1] Dieterich, E., Reduction of isolated singularities, Comment. Math. Helvetici 62 (1987), 654–604 · Zbl 0654.14002 · doi:10.1007/BF02564469
[5] [Di 2] Dieterich, E., The Auslander-Reiten quiver of an isolated singularity, Springer Lecture Notes in Mathematics 1273 (1987), 244–264 · Zbl 0632.14004 · doi:10.1007/BFb0078848
[6] [EG] Evans, E.G., Griffith, P., Syzygies, London Mathematical Society Lecture Note Series, Cambridge 1985
[7] [Ei] Eisenbud, D. Homological algebra on a complete intersection with an application to group representations, Trans. AMS 260,1 (1980), 35–64 · Zbl 0444.13006 · doi:10.1090/S0002-9947-1980-0570778-7
[8] [GK] Greuel, G.M., Kröning, H., Simple singularities in positive characteristic, Math. Z. 203 (1990), 339–354 · Zbl 0715.14001 · doi:10.1007/BF02570742
[9] [HPR] Happel, D., Preiser, U., Ringel, C.M., Vinberg’s characterization of Dynkin diagrams using subadditive functions with application to DTr-periodic modules, Proceedings of the third International Conference on Representations of algebras, Carleton University, Ottawa 1979, Springer Lecture Notes in Mathematics 832, 280–294 · Zbl 0446.16032
[10] [Kn] Knörrer, H., Cohen Macaulay modules on hypersurface singularities I, Inventiones math. 88 (1987), 153–164 · Zbl 0617.14033 · doi:10.1007/BF01405095
[11] [Ma] Matsumura, H., Commutative ring theory, Cambridge 1986 · Zbl 0603.13001
[12] [Po] Popescu, D., Indecomposable Cohen Macaulay modules and their multiplicities, Trans. AMS 320 (1991) · Zbl 0725.13009
[13] [PR] Popescu, D., Roczen, M., Indecomposable Cohen Macaulay modules and irreducible maps, Compositio Mathematica 76 (1990), 277–294 · Zbl 0715.13010
[14] [Re] Reiten, L, Finite dimensional algebras and singularities, Springer Lecture Notes in Mathematics 1273 (1987), 35–57 · Zbl 0646.90092 · doi:10.1007/BFb0078837
[15] [Ri] Ringel, C.M., Tame algebras and integral quadratic forms, Springer Lecture Notes in Mathematics 1099 (1984) · Zbl 0546.16013
[16] [Sc] Schreyer, F. O., Finite and countable CM-representation type, Springer Lecture Notes in Mathematics No 1273 (1987), 9–34 · doi:10.1007/BFb0078836
[17] [So] Solberg, Ø., Hypersurface singularities of finite Cohen Macaulay type, Proc. London Math. Soc., III. Ser. 58 (1989), 258–280 · Zbl 0631.13019 · doi:10.1112/plms/s3-58.2.258
[18] [Yo] Yoshino, Y., Brauer– Thrall type theorem for maximal Cohen-Macaulay modules, J. Math. Soc. Japan 39, 4 (1984), 719–739 · Zbl 0615.13008 · doi:10.2969/jmsj/03940719
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.