×

Two natural generalizations of locally symmetric spaces. (English) Zbl 0747.53013

The authors study two classes of Riemannian manifolds which extend the class of locally symmetric spaces: manifolds all of whose Jacobi operators along geodesics have constant eigenvalues, or parallel eigenspaces, respectively. Various equivalent characterizations are derived and the classification is done for the two- and the three- dimensional case. This classification is particularly interesting for the second class because it gives close relations to classical concepts such as Liouville surfaces and the Schrödinger equation.
Reviewer: O.Kowalski (Praha)

MSC:

53B20 Local Riemannian geometry
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C35 Differential geometry of symmetric spaces
Full Text: DOI

References:

[1] Berndt, J., Real hypersurfaces in quaternionic space forms, J. Reine Angew. Math., 419, 9-26 (1991) · Zbl 0718.53017
[2] Besse, A. L., Manifolds all of whose Geodesics are Closed (1978), Springer: Springer Berlin · Zbl 0387.53010
[3] Besse, A. L., Einstein Manifolds (1987), Springer: Springer Berlin · Zbl 0613.53001
[4] Bianchi, L., Vorlesungen über Differentialgeometrie (1910), Teubner: Teubner Leipzig · JFM 41.0676.01
[5] Bieszk, L., On natural reductivity of five-dimensional commutative spaces, Note Mat., 8, 13-43 (1988) · Zbl 0701.53069
[6] Chen, B. Y.; Vanhecke, L., Differential geometry of geodesic spheres, J. Reine Angew. Math., 325, 28-67 (1981) · Zbl 0503.53013
[7] Chi, Q. S., A curvature characterization of certain locally rank-one symmetric spaces, J. Differential Geom., 28, 187-202 (1988) · Zbl 0654.53053
[8] D’Atri, J. E.; Nickerson, H. K., Divergence-preserving geodesic symmetries, J. Differential Geom., 3, 467-476 (1969) · Zbl 0195.23604
[9] D’Atri, J. E.; Nickerson, H. K., Geodesic symmetries in spaces with special curvature tensors, J. Differential Geom., 9, 251-262 (1974) · Zbl 0285.53019
[10] Eisenhart, L. P., Riemannian Geometry (1926), Princeton University Press: Princeton University Press Princeton · Zbl 0041.29403
[11] Eisenhart, L. P., Separable systems of Stäckel, Ann. of Math., 35, 2, 284-305 (1934) · Zbl 0009.38002
[12] Gray, A., Classification des variétés approximativement kählériennes de courbure sectionnelle holomorphe constante, C.R. Acad. Sci. Paris Sér. A, 279, 797-800 (1974) · Zbl 0301.53016
[13] Gray, A., Tubes (1990), Addison-Wesley: Addison-Wesley Redwood City · Zbl 0692.53001
[14] Hiepko, S., Eine innere Kennzeichnung der verzerrten Produkte, Math. Ann., 241, 209-215 (1979) · Zbl 0387.53014
[15] Kato, T., Perturbation Theory for Linear Operators (1966), Springer: Springer Berlin · Zbl 0148.12601
[16] J.L. Kazdan, personal communication.; J.L. Kazdan, personal communication.
[17] Kowalski, O., Spaces with volume-preserving symmetries and related classes of Riemannian manifolds, (Rend. Sem. Mat. Univ. Politec. Torino (Settembre 1983), Fascicolo Speciale), 131-158 · Zbl 0631.53033
[18] Kowalski, O.; Vanhecke, L., Opérateurs différentiels invariants et symétries géodésiques préservant le volume, C.R. Acad. Sci. Paris Sér. I, 296, 1001-1003 (1983) · Zbl 0535.53039
[19] Kowalski, O.; Vanhecke, L., A generalization of a theorem on naturally reductive homogeneous spaces, Proc. Amer. Math. Soc., 91, 433-435 (1984) · Zbl 0542.53029
[20] Kowalski, O.; Vanhecke, L., Classification of four-dimensional commutative spaces, Quart. J. Math. Oxford, Ser. 2, 35, 281-291 (1984) · Zbl 0549.53048
[21] Kowalski, O.; Vanhecke, L., Classification of five-dimensional naturally reductive spaces, Math. Proc. Cambridge Philos. Soc., 97, 445-463 (1985) · Zbl 0555.53024
[22] Kowalski, O.; Vanhecke, L., Riemannian manifolds with homogeneous geodesics, Boll. Un. Mat. Ital. B, 5, 189-246 (1991) · Zbl 0731.53046
[23] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity (1983), Academic Press: Academic Press New York · Zbl 0531.53051
[24] Osserman, R., Curvature in the eighties, Amer. Math. Monthly, 97, 731-756 (1990) · Zbl 0722.53001
[25] Riehm, C., Explicit spin representations and Lie algebras of Heisenberg type, J. London Math. Soc. (2), 29, 49-62 (1984) · Zbl 0542.15010
[26] Robertson, H. P., Bemerkung über separierbare Systeme in der Wellenmechanik, Math. Ann., 98, 749-752 (1928) · JFM 54.0963.05
[27] Ruse, H. S.; Walker, A. G.; Willmore, T. J., Harmonic Spaces (1961), Edizioni Cremonese: Edizioni Cremonese Roma · Zbl 0134.39202
[28] Sumitomo, T., On the commutator of differential operators, Hokkaido Math. J., 1, 30-42 (1972) · Zbl 0248.53050
[29] Szabó, Z. I., The Lichnerowicz conjecture on harmonic manifolds, J. Differential Geom., 31, 1-28 (1990) · Zbl 0686.53042
[30] Thimm, A., Integrabilität beim Geodätischen Fluβ, Bonner Math. Schriften, 103 (1978) · Zbl 0412.58023
[31] Tricerri, F.; Vanhecke, L., Homogeneous Structures on Riemannian Manifolds, London Math. Soc. Lecture Note Ser., 83 (1983), Cambridge University Press: Cambridge University Press London · Zbl 0509.53043
[32] Vanhecke, L., Some solved and unsolved problems about harmonic and commutative spaces, Bull. Soc. Math. Belg. Sér. B, 34, 1-24 (1982) · Zbl 0518.53042
[33] Vanhecke, L., Geometry in normal and tubular neighborhoods (1988), Lecture Notes Dep. Math. Univ. Leuven: Lecture Notes Dep. Math. Univ. Leuven Leuven
[34] Vanhecke, L., (Proc. Workshop of Differential Geometry and Topology, Cala Gonone (Sardinia). Proc. Workshop of Differential Geometry and Topology, Cala Gonone (Sardinia), Rend. Sem. Fac. Sci. Univ. Cagliari, Suplemento, 58 (1988)), 73-176
[35] Vanhecke, L.; Willmore, T. J., Interaction of tubes and spheres, Math. Ann., 263, 31-42 (1983) · Zbl 0491.53034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.